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This article investigates the problem of geosocial similarity among users of online social networks, based on
the locations of their activities (e.g., posting messages or photographs). Finding pairs of geosocially similar
users or detecting that two sets of locations (of activities) belong to the same user has important applications
in privacy protection, recommendation systems, urban planning, and public health, among others. It is
explained and shown empirically that common distance measures between sets of locations are inadequate for
determining geosocial similarity. Two novel distance measures between sets of locations are introduced. One
is the mutually nearest distance that is based on computing a matching between two sets. The second measure
uses a quad-tree index. It is highly scalable but incurs the overhead of creating and maintaining the index.
Algorithms with optimization techniques are developed for computing the two distance measures and also
for finding the k-most-similar users of a given one. Extensive experiments, using geotagged messages from
Twitter, show that the new distance measures are both more accurate and more efficient than existing ones.
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1. INTRODUCTION

Many online social networking services and microblogging applications, including Face-
book, Twitter, Foursquare, and Instagram, allow users to publish geotagged messages
(sometimes referred to as posts or tweets). Geotagged messages indicate the location of
the user at the time of the action (e.g., when posting a message or taking a picture),
and thus provide information about places the user has visited.

The visited locations, as indicated by the geotagged messages, can sometimes identify
a user. In other cases, they can be used for finding geosocial similarity (similarity, for
short) between users. Intuitively, geosocial similarity between two users measures the
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extent to which the locations of their messages have the same geospatial distribution—
that is, it indicates whether their activities are performed in about the same locations.
For instance, when two users send many messages from the same places (e.g., the same
football stadium, the same concert hall, and the same train station), this increases the
similarity between them. When users send messages from far apart locations, the
similarity between them is deemed low.

There are different ways to use messages when trying to find similarity between
users, such as by considering the content, format, and other parameters of the mes-
sages. We focus on finding similarity by merely using the locations of messages for four
reasons:

(1) A location-based effective measure for detecting similarity can be combined with
other methods that do consider the content of messages [Grabovitch-Zuyev et al.
2007]. In particular, we examine the extent to which message locations are suffi-
cient for determining similarity among users.

(2) Since our methods consider only locations, they can be employed over different types
of activities that are not necessarily textual and only have locations in common.
For example, location-based methods can determine that two users are similar
even when one posts geotagged textual messages (e.g., on Twitter) while the other
uploads geotagged photos (e.g., on a photo-sharing Web site, such as Instagram).

(3) Some applications may focus on locations and thus give a greater weight to geoso-
cial similarity compared to other types of similarity, such as applications for rec-
ommendations about locations [Ye et al. 2010; Bao et al. 2012; Wang et al. 2013] or
routes [Kurashima et al. 2010; Doytsher et al. 2011].

(4) Euclidean distance or Haversine distance between points can be computed effi-
ciently, so it is possible to use them to devise scalable distance measures for sets
of locations. Taking other attributes into account might reduce efficiency and may
not be applicable to large datasets.

Some works have considered the semantics of locations for measuring semantic
similarity in geospatial datasets [Janowicz et al. 2008; Schwering 2008; Lee and Chung
2011]. In this article, however, we do not take the semantics of locations into account
for two reasons. First, locations in our datasets are based on GPS and are not accurate
enough to indicate with certainty from which building or from which floor in a building
the message was sent. Second, extracting the semantics of a place requires expensive
geometric operations, such as finding which polygonal area contains a given point. Our
focus in this work is on efficient methods that do not require expensive computations.

Finding geosocial similarity as well as identity detection have important applications,
in various domains, as elaborated next.

Applications of geosocial similarity. The following are some potential applications of
geosocial similarity:

—Sociospatial analysis: Companies and organizations often analyze data from social
media for different tasks, such as market research, learning about public opin-
ions, inference of demographic properties of the population, and detection of trends
[Carrington et al. 2005; Budak et al. 2011; Levin and Kanza 2014; Zhong et al. 2015].
Frequently, such analyses require measuring similarity or distance among users. For
example, several clustering and classification methods require a notion of distance (or
similarity, which is the inverse of distance) to be applied. Other advanced methods,
such as blockmodeling [Doreian et al. 2005], require a notion of similarity.

—Recommendation systems: Similarity can be utilized in recommendation systems for
suggesting to users points of interest based on locations that similar people have
deemed relevant [Adomavicius and Tuzhilin 2005; Matyas and Schlieder 2009].
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—Geospatial entity resolution: In geospatial entity resolution, the distance between
different features is used to determine if two entities match [Sehgal et al. 2006].
Visits of similar users in different entities can be used, with other features, to discover
matching entities.

—Spatial outlier detection: Given a set of similar users, detecting a small set of dis-
similar users can be used for discovering outliers [Lu et al. 2003] (e.g., as part of a
quality assurance procedure).

Identity detection. In identity detection [Gani et al. 2012], the goal is to determine
whether two sets of geotagged messages belong to the same person. This is useful
when analyzing social media data. For example, if a user publishes geotagged messages
in various online social networks under different names, an identity detection could
determine that all of those messages are from the same user, thereby facilitating and
improving data integration.

A more important application of identity detection is de-anonymization of people
who use several online social networks [Narayanan and Shmatikov 2009]—in other
words, discovering that distinct users on two social media sites are actually the same
person. For example, suppose that someone publishes on Twitter under the name Alice
Liddell, whereas on Instagram she is known as Elizabeth Carroll. Periodically, she
can test whether new activities would cause Alice Liddell to be among the k-most-
similar users of Elizabeth Carroll or vice versa. If the test is positive, she knows that
those new activities will breach her privacy and it is better not to carry them out. The
ability to perform such a test using only locations is important for two reasons. First,
posts on different social media sites may have little in common other than geospatial
information. Second, as we show in this article, locations alone are quite sufficient for
finding similar users. Hence, for the sake of maintaining anonymity, it is important to
do a similarity test based only on locations.

As already mentioned, this article focuses on detecting similarity based only on
locations of messages. Typically, similar users do not visit precisely the same places
with the exact same frequency. Hence, a practical approach is to find distance measures
over sets of messages that provide a good approximation of geosocial similarity. Such
distance measures should satisfy the following requirements:

(1) The measure should be correlated with geosocial similarity between users.
(2) The computation of the distance should be scalable—that is, it has to be done

efficiently even over many users with large sets of messages.

Our main contributions are as follows:

—We formulate geosocial similarity among users of online social networks in terms of
the distance between sets of locations (assuming that they are available from users’
messages). The importance of this approach was explained earlier.

—We review existing distance measures between sets of locations and explain why
they are not suitable to the task of determining geosocial similarity.

—We introduce two novel distance measures that have a high correlation with geosocial
similarity. One method is based on the notion of mutually nearest neighbors. We show
how to compute this distance measure efficiently without preprocessing. The other
method is based on quad-tree indexes and is highly efficient if those indexes are
already available.

—We provide algorithms and optimization techniques for efficiently computing the
k-most-similar users of a given one.

—We apply a novel methodology to test the accuracy of a distance measure for deter-
mining geosocial similarity. We show the validity of our methodology by a statistical
analysis of the p-value.
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—We describe extensive experiments showing that our two novel distance measures
outperform existing ones in terms of both accuracy and efficiency. Moreover, our
experiments also show that existing measures, such as Hausdorff distance (HD), are
not appropriate for the task of detecting geosocial similarity.

The article is organized as follows. We discuss related work in Section 2. In Section 3,
we present our framework and define the research problem. In Section 4, we present
four traditional distance measures, for sets of points, and we illustrate and explain
their disadvantages for estimating geosocial similarity. Then in Sections 5 and 6, we
introduce two novel distance measures. Differently from traditional distance measures,
ours are both correlated with similarity between users and can be computed efficiently.
In Section 7, we study the problem of finding the k-most-similar users, for a given one,
and we provide optimization techniques to enhance the efficiency of the computation. In
Section 8, we present an experimental evaluation and show that our distance measures
are effective in detecting similarity among users. We also show how the optimization
techniques of Section 7 improve the efficiency of the computation of the k-most-similar
users. We conclude in Section 9.

2. RELATED WORK

The problem of measuring similarity between users has been studied from different
aspects. Cheung and Tian [2004] showed how learning techniques can be applied in
recommendation systems to find similarity between users according to their prefer-
ences. A similar approach was used for utilizing user habits [Ma et al. 2012]. Several
works studied the use of similarity among users in collaborative filtering [Candillier
et al. 2008; Cao et al. 2008]. Anand and Bharadwaj [2010] and Stahl and Gabel [2003]
showed how to apply genetic algorithms to fit similarity measures to different envi-
ronments. Golbeck [2009] studied the problem of finding similarity between users in
ordinary social network services (i.e., without the use of geotagging). His goal was to
predict trust between users. Nisgav and Patt-Shamir [2011] studied a setting in which
users are deemed similar if they provide almost identical answers to queries. McKenzie
et al. [2013] showed how to apply topic modeling to use unstructured data (e.g., tips and
reviews) as an additional feature when computing user similarity. Yuan et al. [2013]
presented a framework for exploring and hierarchically categorizing urban lifestyles
based on user activity in online social networks.

Jin et al. [2011] and Chung et al. [2014] studied the problem of finding similarity
between users of online social networks based on the similarity of attributes and of the
network of friends. Their goal was to cope with identity clone attacks. Raad et al. [2010]
and Kong et al. [2013] showed how to match users in online social networks based on
personal properties. An experiment that tried to match profiles of the same users in
Facebook and Twitter is reported in Motoyama and Varghese [2009]. They did not use
locations, and the accuracy of their approach is low relative to methods that do use the
spatial locations of users. Since these works did not consider the spatial aspects of the
data, our methods can strengthen their methods by adding a spatial dimension to their
similarity tests.

Determining similarity between users according to locations has been studied in
a few works; however, the proposed techniques were based on matching trajectories,
which is very different from ours. Li et al. [2008] and Zheng et al. [2009] showed how
to use data-mining techniques to find similarity between users based on the location
history of the users. They showed how to extract the location history from GPS traces,
construct trajectories, and find stay points of users. From the stay points and the
trajectories, they build sequences of visited places, and define a matching of sequences,
to measure the similarity between sequences. Similarity between users is determined
according to the similarity of their sequences. Xiao et al. [2010] also investigated the
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problem of determining user similarity based on GPS trajectories of the users. Their
method finds the semantic meaning of the places that users have visited, and it matches
the trajectories that are extracted from the location history of the users, according to
the types (semantics) of the visited geographic entities. Ying et al. [2010] showed how
to recommend friends based on user trajectories. Zheng and Xie [2010] studied the
inverse problem of discovering similarity between locations based on visits of users
in these locations. How to use MapReduce for the similarity detection was studied
in Zhang et al. [2014].

The threats to the privacy of users in online geosocial networks were pointed out and
stressed by several researchers [Krumm 2007; Zhong et al. 2007; Golle and Partridge
2009; Carbunar and Sion 2011; Carbunar et al. 2012; Kanza 2016]. Such threats are
related to the ability to identify users based on the locations they visited and specifically
linking a profile to a real person or identifying that two profiles (in a single network or
in more than one network) belong to the same person. Searching for people in online
social networks was studied in Motoyama and Varghese [2009]. The problem of leakage
of personal information from online social networks was addressed in Krishnamurthy
and Wills [2009] and Carmagnola et al. [2014].

The following two topics received a lot of attention and are somewhat related to the
problem we are studying. One is spatio-textual similarity join [Ballesteros et al. 2011;
Liu et al. 2012; Bouros et al. 2012; Arge et al. 1998, 2000]. The other is searches that
combine text with geographic locations [Chen et al. 2006; De Felipe et al. 2008; Pat
et al. 2015; Christoforaki et al. 2011; Suel 2009]. However, these topics are different
from the problem we are investigating. In a similarity join, the distances are between
pairs of spatial objects and not between sets of points, so the techniques are very
different from those presented in this article. In a search, objects that are similar to a
given query are discovered; however, also in this problem, similarity is among pairs of
spatial objects and is not based on a distance between sets of points. The problem of
discovering associated locations based on geotagged tweets was studied in Kanza et al.
[2014], yet the association there is between locations and not between users.

In the literature, there are several distance measures for sets of points. But these
measures were not designed for evaluating similarity between users, and their effec-
tiveness for such tasks was not tested. Eiter and Mannila [1997] studied the eval-
uation of metric distances for sets of points. They examined five metrics and gave
polynomial-time algorithms for computing them. However, their metrics are either in-
effective for measuring similarity among users or require a computation that is too
expensive for practical applications. Weinberger and Saul [2009] presented similarity
measures for sets of points in the context of large margin nearest neighbor (LMNN)
classification. Dubuisson and Jain [1994] examined variations of the HD and of the
nearest-neighbor distance (NND). However, as we show in our experimental evalua-
tion, HD and NND are ineffective for measuring spatial similarity among users.

3. PROBLEM DEFINITION

In this section, we present our framework and provide definitions and notations.

Users and messages. Many social media platforms allow users to post geotagged mes-
sages (messages, for short).1 We denote by U the set of users. For each user u ∈ U , we
denote by Mu the messages of u.

Every geotagged message is associated with a geographic location. By a slight abuse
of notation, we use m to denote both a message and its location. Accordingly, m.x and
m.y denote the x and y Cartesian coordinates, respectively, of the location of m. The

1For simplicity, we only consider activities of “posting a message”; however, uploading a geotagged photo or
reporting the user location are equivalent to posting a message in the context of our framework.
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distance between two messages, or between a message and a point, is the Haversine
distance between their locations.

Geosocial similarity. Intuitively, two users are geosocially similar if they visit the same
locations, or nearby locations, in a relatively similar frequency. In other words, if u1
and u2 are geosocially similar, a place that u1 frequently visits is also frequently visited
by u2 and vice versa. A place that u1 rarely visits (or does not visit at all) is also rarely
visited (or is not visited at all) by u2 and vice versa.

In the real world, there are no two users who are precisely the same in terms of the
places they visit. Thus, similarity is determined by defining appropriate distance mea-
sures and using them inversely—a short distance indicates high similarity, whereas a
long distance means low similarity.

Note that the notion of a “place” may vary in different settings and, moreover, is not
always effective due to inaccuracies of locations in geotagged messages. For example,
two messages that are posted from the same location may be associated with different
buildings because GPS coordinates are imprecise. Yet even in such a case, the locations
of the messages will be near each other. Thus, we consider locations of messages as
points and base similarity detection on the distance between those points. To that
end, we need to define distance measures for sets of points. In the next section, we
present such measures. The distance between users is the distance between their sets
of messages.

It is impossible to always identify any two similar users, because their sets of mes-
sages are never identical. This raises the issue of how to evaluate the effectiveness of
a similarity measure. We propose a novel approach to this problem that is based on
the observation that a user is always similar to herself. Hence, if we arbitrarily split
the set of messages of a user into two, a good similarity measure should detect that
those two subsets belong to the same person (i.e., the distance between them should
be short). In other words, to measure the effectiveness of a distance measure, we test
how well it identifies cases of two sets that belong to the same user.

The new evaluation method that we suggest can be applied in different settings. The
following example illustrates it in a different scenario from the one we discuss in the
rest of the article.

Example 3.1. Consider n photographers u1, . . . , un, each one associated with a set
of artistic photos she took, and suppose that there are no signatures on the photos.
Suppose that two experts, Alice and Bob, claim that they can detect similarity between
artists (based on features like style, topic, etc). In such a case, it is possible to verify
the claims of Alice and Bob, and to compare between them, by applying our suggested
metric. In other words, the photos of some artist, say u1, will be partitioned arbitrarily
into two sets M1 and M2. The set M1 will be provided to Alice and Bob, and they will
need to find the set that is most similar to it among M2 and the sets associated with
u2, . . . , un. Deeming M2 as the most similar to M1 will be considered a success. Such a
test could be repeated, and the experts could then be evaluated based on the number
of their successes.

This test may seem to be an easy one. However, our experimental evaluation shows
that when it comes to detecting similarity among users merely based on locations of
activities, common methods fail.

We apply the test with respect to some given value k, as explained next.

The k-most-similar users. Given a user u, a set of users U, and a set-distance function
dists, the users of U are ranked according to the distance of their messages from those of
u. (We want the distance measure to be highly correlated with similarity among users;
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Table I. Distance Measures and Their Notations

Distance Measure Abbreviation Notation

Hausdorff distance HD disth

Center of mass distance CMD_O disto
cm

(the distance between the centers of mass)
Center of mass distance CMD_S dists

cm
(the average distance from messages of the smaller set
to the center of mass of the larger set)
Center of mass distance CMD_L distl

cm
(the average distance from messages of the larger set
to the center of mass of the smaller set)
Earth mover’s distance (link distance) EMD distem

Nearest-neighbor distance NND_S dists
nn

(the average distance from messages of the smaller set
to their nearest neighbors in the larger set)
Nearest-neighbor distance NND_L distl

nn
(the average distance from messages of the larger set
to their nearest neighbors in the smaller set)
Mutually nearest distance MND distmn

Quad-tree distance QTD distqt

Note: MND and QTD are novel measures.

however, we can use such a measure even when it is not correlated with similarity.)
The k-most-similar users of u are u1, . . . , uk in U such that for any other u′ ∈ U (i.e., u′
is not one of u1, . . . , uk), dists(Mu, Mu′ ) ≥ dists(Mu, Mui ) for all 1 ≤ i ≤ k.

Effectiveness. To evaluate the effectiveness of a distance measure, we experimentally
determine its accuracy as we now describe. First, we use two sets of messages, M and
M1, of the same user u1. Typically, we require that M ∩ M1 = ∅. For instance, M could
be the geotagged tweets of u1 in Twitter, and M1 could be the geotagged posts of u1
in Instagram. Second, let M2, . . . , Mn be the set of messages of u2, . . . , un, respectively,
such that all ui (1 ≤ i ≤ n) are distinct users.

We say that M and M1, M2, . . . , Mn are a success (with respect to the parameter k)
of a given set-distance function dists if M1 is one of the k nearest sets of M among
M1, M2, . . . , Mn. In other words, let u denote the user with the set of messages M (i.e., u
and u1 are the same user, but the former is associated with M, whereas the latter is
associated with M1). Then u1 is one of the k-most-similar users of u among u1, u2, . . . , un,
that is, the users whose message sets are M1, M2, . . . , Mn.

The accuracy of a set-distance function dists is the fraction of successes in t runs,
where each one comprises a different sequence of n+1 sets M, M1, M2, . . . , Mn. Thus, we
can compare two different distance measures based on their accuracy. Higher accuracy
means higher effectiveness.

Problem definition. We have two goals: (1) to present set-distance functions that are
correlated with similarity (i.e., provide high accuracy) and can be computed efficiently,
and (2) to give efficient methods for finding the k-most-similar users of a given user u.

4. SIMILARITY MEASURES

Our goal is to measure similarity between users as the inverse of the distance be-
tween their message sets. To that end, we describe variations of four existing distance
measures and present two new ones. The existing measures serve as baselines for eval-
uating the new ones. The measures and their notations are given in Table I. Mutually
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nearest distance (MND) and quad-tree distance (QTD) (which are the last two rows of
Table I) are the new measures that we introduce in this article. They are discussed
in Sections 5 and 6, respectively. Their advantage over the traditional measures is
twofold. First, they are more accurate. Second, they can be computed more efficiently.

In the definitions of all of the measures, we use dist(m1, m2) to denote the Haversine
distance between the locations of two messages m1 and m2. Note that in small areas,
dist(m1, m2) can be approximated by the Euclidean distance.

In this section, we describe the first seven measures of Table I, which are based
on four existing methods for measuring the distance between two sets of points. We
also discuss the strengths and weakness of those measures. In Sections 5 and 6, we
present novel distance measures, which are more accurate and faster to compute than
the traditional methods.

4.1. Hausdorff Distance

HD is a simple and common measure between sets of points [Eiter and Mannila 1997;
Nutanong et al. 2011]. For each point p, we calculate the distance between p and
its nearest element in the other set. Then the maximum over all of those distances
is returned. We denote this distance by disth. Formally, the HD between two sets of
messages M1 and M2 is

disth(M1, M2) = max
{

max
p2∈M2

{ min
p1∈M1

{dist(p1, p2)}}, max
p1∈M1

{ min
p2∈M2

{dist(p1, p2)}}
}

.

Example 4.1. Consider the sets of messages M1 (depicted by stars in Figure 1) and
M2 (depicted by crosses in Figure 1). The HD between the two sets is indicated by the
arrow, and the effect of the removal of a single point is presented.

The HD can be useful for comparing sets of activities that are uniformly distributed
in a given area [Adelfio et al. 2011]. However, there are many real-world scenarios
where the HD provides poor results, because it is determined by just two points. For
example, the sets of messages M1 and M2 in Figure 1 represent different distributions,
because on the left (but not on the right) side of the area, the percentage of stars is
greater than that of the crosses. Nonetheless, this does not affect the HD, whereas the
removal of a single star, as illustrated in Figure 1, does change it significantly.

4.2. Center of Mass Distance

In the HD, the addition or removal of a single point can considerably change the result,
even when the sets are big. A simple measure that is aimed at solving this problem is the
center of mass distance (CMD). Given a set M1, its center of mass is the location (c1

x, c1
y)

such that c1
x is the average of the x coordinates and c1

y is the average of the y coordinates
(over the locations of all messages in M1). In other words, c1

x = (
∑

m∈M1
m.x)/|M1| and

c1
y = (

∑
m∈M1

m.y)/|M1|, where |M1| is the number of messages in M1. The center of mass
of M2, denoted by (c2

x, c2
y), is defined similarly.

There are different variants of using the centers of mass for measuring the dis-
tance between M1 and M2. Next, we present three of them. The most direct way is to
simply measure the Haversine distance between the two centers of mass. This mea-
sure is denoted by disto

cm and its definition is disto
cm(M1, M2) = dist((c1

x, c1
y), (c2

x, c2
y)).

The second way is to measure the average distance from the messages of the smaller
set to the center of mass of the larger set. We denote this variant by dists

cm and its
definition is dists

cm(M1, M2) = (
∑

m∈M1
dist(m, (c2

x, c2
y)))/|M1| for |M1| ≤ |M2|. The third

variant, denoted by distl
cm, is to measure the average distance from the messages
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Fig. 1. The HD between two sets of points (one is
shown as stars and the other as crosses). The HD is
indicated by the arrow.

Fig. 2. Three sets with the same center of mass (cm).
Each shape (square, star, cross) represents the points
of a different set. The arrow indicates the center of
mass of all three sets.

of the larger set to the center of mass of the smaller set—that is, distl
cm(M1, M2) =

(
∑

m∈M2
dist(m, (c1

x, c1
y)))/|M2| for |M1| ≤ |M2|.

Since disto
cm only uses the centers of mass, it is less sensitive to changes than either

dists
cm or distl

cm, because the latter two take the distance to the center of mass for
each message separately. Higher sensitivity in this context gives a greater weight to
outliers—that is, to messages that are far from the other ones of their set. Hence, in
cases where messages are distributed nonuniformly (which is common in real-world
scenarios), the less sensitive method performs better than the sensitive ones. We elab-
orate on this in Section 8 when presenting the experimental evaluation.

Adding a single point has only a small effect on the center of mass of a large set. Thus,
the (variants of the) CMD are less sensitive to small changes in the sets compared to
the HD. However, the CMD does not take into account the exact distribution of points in
space and therefore might not distinguish between sets of points that are very different
from one another (i.e., the distance between them would be close to zero). For example,
consider the three sets of messages in Figure 2. All three of them have the same center
of mass (pointed to by the arrow). Indeed, two sets (the squares and the stars) are very
similar to each other, but both are different from the set of crosses.

4.3. Link Distance (or Earth Mover’s Distance)

The actual distribution (in space) of two sets can be effectively captured by considering
a matching between their messages [Beeri et al. 2004; Safra et al. 2010]. A matching
over M1 and M2 is a subset μ ⊆ M1 × M2 of pairs of messages (one from each set). For
(m1, m2) ∈ μ, we say that m1 is matched with m2 (and m2 is matched with m1). Note that
a message of one set can be matched with several messages of the other set.

For the purpose of similarity measures, messages are matched according to their
locations. There are two issues to deal with: first, how to define the distance based
on a given matching, and second, which matching should be used for determining the
distance. The main challenge is to apply a matching-based approach to sets of different
sizes and distributions.

The link distance of Eiter and Mannila [1997] minimizes the sum of the distances
between matched messages. In detail, given two sets M1 and M2 of messages, a match-
ing μ ⊆ M1 × M2 is complete if every message among those of M1 and M2 participates
in at least one pair of μ. A minimal matching is a complete matching μ such that
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∑
(m1,m2)∈μ dist(m1, m2) ≤ ∑

(m1,m2)∈μ′ dist(m1, m2) holds for all complete matchings μ′.
The link distance between M1 and M2 is the average of the distances between the pairs
of a minimal matching.2 When M1 and M2 have the same size, the link distance is
equivalent to the known earth mover’s distance (EMD).

Usually, the EMD is computed by the Hungarian algorithm, which has an O(n3) time
complexity for sets of n points [Ahuja et al. 1993]. This time complexity is too high to
be practical, even for sets with only a few hundred messages, assuming that there are
many sets to compare. Even approximation algorithms of this problem are costly over
large datasets [Hou U et al. 2008, 2010].

4.4. Nearest-Neighbor Distance

NND is a common measure. It is the average distance between a message in one set
and its nearest message in the other set [Eiter and Mannila 1997].

In detail, given a message m1 ∈ M1, its nearest neighbor in M2, denoted by NNM2 (m1),
is the message m2 that has the shortest distance3 to m1 among all messages of
M2. In other words, NNM2 (m1) is the message m2 ∈ M2 such that dist(m1, m2) ≤
dist(m1, m′) for every m′ ∈ M2. The nearest neighbor in M1 of a message m2 ∈ M2 is
defined similarly. The distance-to-nearest of m1 is the distance from m1 to its nearest
neighbor in the other set.

As in the case of the CMD, the NND approach can be applied in different manners.
We define two of them. Let M1 and M2 be two sets of messages such that M1 is smaller
than M2 (i.e., |M1| ≤ |M2|). We denote by dists

nn the average distance-to-nearest over
the messages of the smaller set—that is,

dists
nn(M1, M2) =

∑
m1∈M1

dist(m1, NNM2 (m1))
|M1| .

We denote by distl
nn the average distance-to-nearest over the messages of the larger

set—that is,

distl
nn(M1, M2) =

∑
m2∈M2

dist(m2, NNM1 (m2))
|M2| .

In cases such as the one in Figure 2, the NND (of both versions) deems that the
sets of stars and squares are similar to each other, but both are different from the
set of crosses. However, this approach does not deal well with clusters of messages.
In Figure 4, for example, the two sets (of stars and squares) have clusters in different
locations. Hence, they should be considered dissimilar; however, the NND between
them is short. Furthermore, the nearest-neighbor approach cannot distinguish the
case of the dissimilar sets in Figure 4 from the similar ones in Figure 3, because in the
former each square has a nearby star and vice versa, so the distance to the nearest
neighbor is short.

Thus far, we have discussed common methods or variations thereof. In the next two
sections, we present two novel distance measures and illustrate their advantages over
the existing ones.

5. MUTUALLY NEAREST DISTANCE

In this section, we present MND. We show how to compute it efficiently and compare
it to the measures discussed earlier.

2Traditionally, sum is applied to the pairwise distances, instead of average. However, the sum of distances
between matched messages is problematic, because it is affected by the sizes of the sets.
3We make sure that the nearest neighbor of an element is always unique. If needed, we do so by slightly
modifying the distance function.
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Fig. 3. Two similarly distributed sets. Fig. 4. Two dissimilar clustered sets.

As already shown, the nearest-neighbor approach sometimes uses a matching that
is not suitable for defining the distance between sets of points. MND resembles NND
in the sense that it measures the average distance between matched pairs of messages.
However, MND employs a matching that is defined differently from the one used by
NND. Next, we define this matching and explain how to use it for measuring the
distance between sets of messages.

Definition 5.1 (Mutually Nearest). Given two messages m1 ∈ M1 and m2 ∈ M2, we
say that m1 and m2 are mutually nearest if m1 is the nearest neighbor of m2 in M1 and
m2 is the nearest neighbor of m1 in M2.

Given two sets of equal size, a mutually nearest matching is iteratively constructed
as follows. Each iteration matches the pair of mutually nearest messages that have the
shortest distance between them. The matched messages are deleted, and the process
continues with the remaining messages. Since the two sets are of equal size, this process
creates a one-to-one matching between their messages.

Mutually nearest matching is suitable for measuring similarity because each point
participates in the matching and affects the measure proportionally to its weight in
its containing set—that is, in a set of n points, a single point has a weight of 1

n. For
comparison, we have seen that in the HD, a single point may significantly affect the
distance. Additionally in the nearest-neighbor method, where several points can be
matched to a single point, the effect of a single point on the measure can be much
greater than the effect of other points from the same set.

5.1. Dealing with Sets of Unequal Size

Next, we describe how to construct a mutually nearest matching when the sets are of
unequal size. In this case, we have to match a message of the smaller set with several
ones from the larger set. For example, if there are two messages in the smaller set M1
and four messages in the larger set M2, then each message of M1 is matched with two
messages of M2. However, we need to prevent a case where we give greater weights to
some messages than to others, which could happen when the ratio |M2|

|M1| of the numbers
of messages in the two sets is not an integer. For example, suppose that there are two
messages in M1 and three messages in M2. If one message of M1 appears in a single
pair of the matching, whereas the other appears in two of them, then the average
distance between pairs may depend on the frequency of messages in the matching.
Alternatively, if we match each message of M1 with only one message of M2, then some
messages of M2 will not be included in the matching.
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To solve this problem, we create two new sets from M1 and M2 as follows. M∗
1 com-

prises |M2| copies of each message of M1, and M∗
2 comprises |M1| copies of every message

of M2. Each copy is a new distinct message with the same location as the original mes-
sage. Note that each one of the sets M∗

1 and M∗
2 comprises |M1| · |M2| messages. For

example, if there are two messages in M1 and three messages in M2, we create three
copies of the messages of M1 and two copies of the messages of M2, so there are six
messages in each of M∗

1 and M∗
2 . (To satisfy the requirement that the sets M∗

1 and M∗
2

are of equal size, we could reduce the number of copies by using the least common mul-
tiple of |M1| and |M2|. However, this affects neither the complexity of the computation
nor the quality of the matching, but it slightly complicates the description.)

To construct the mutually nearest matching μ over M∗
1 and M∗

2 , we also use the
original sets M1 and M2 and do it as follows. Let (m1, m2), where m1 ∈ M1 and m2 ∈ M2,
be a pair of mutually nearest messages with the shortest distance. Let m∗

1 and m∗
2 be

copies of m1 and m2 in M∗
1 and M∗

2 , respectively. Then (1) (m∗
1, m∗

2) is added to μ; (2) m∗
1

and m∗
2 are discarded from M∗

1 and M∗
2 ; and (3) when there are no more copies of m1 in

M∗
1 , the message m1 is removed from M1, and the same is applied to m2 and M2. This

process terminates when the sets M1, M2, M∗
1 , and M∗

2 are empty. The four sets become
empty at the same time for the following reason. Initially, the sets M∗

1 and M∗
2 have the

same number of elements. In each iteration, their sizes decrease by one. In addition,
the last element of M1 is removed when M∗

1 becomes empty, and the same holds for M2
and M∗

2 .
The preceding process is well defined because there is always at least one pair of

mutually nearest messages in M1 and M2, as stated by the following proposition. We
assume that each pair of messages (not necessarily mutually nearest) has a unique
distance. In other words, for every m1, m′

1 ∈ M1 and m2, m′
2 ∈ M2, if (m1, m2) �= (m′

1, m′
2),

then dist(m1, m2) �= dist(m′
1, m′

2). (Note that (m1, m2) �= (m′
1, m′

2) if either m1 �= m′
1,

m2 �= m′
2 or both.)

PROPOSITION 5.2. Consider two nonempty sets of messages M1 and M2, such that
distances between pairs are unique. Then there exists a pair (m1, m2) ∈ M1 × M2 such
that m1 and m2 are mutually nearest.

Proposition 5.2 is actually a corollary of Proposition 5.3, which also shows the fol-
lowing. We can efficiently find the pair of mutually nearest messages such that the
distance between them is the shortest.

PROPOSITION 5.3. Consider two nonempty sets of messages M1 and M2 such that
distances between pairs are unique. Let (m1, m2) ∈ M1 × M2 have the shortest distance
among all pairs of M1 × M2. In other words, dist(m1, m2) < dist(m′

1, m′
2) for all (m′

1, m′
2) �=

(m1, m2) in M1 × M2. Then m1 and m2 are mutually nearest. Hence, (m1, m2) has the
shortest distance among all pairs of mutually nearest messages.

PROOF. If m1 and m2 are not mutually nearest, then either there is a message m′′
2

in M2 that is closer to m1 than m2 or there is a message m′′
1 in M1 that is closer

to m2 than m1. In the first case, dist(m1, m′′
2) < dist(m1, m2) and in the second case

dist(m′′
1, m2) < dist(m1, m2), in contradiction to the assumption that (m1, m2) is the pair

with the shortest distance between its messages. Thus, m1 and m2 are mutually nearest.
Since the distance between m1 and m2 is the shortest among all pairs of M1 × M2, it is
also the shortest among all pairs of mutually nearest messages. �

Consider again the iterative process described earlier for computing the mutually
nearest matching μ. According to Proposition 5.3, to find the required pair in each
iteration, we only need to choose the one that has the shortest distance between its
messages among all existing pairs in M1 × M2.
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The removal of messages can be done in batches. In other words, suppose that (m1, m2)
is the pair of mutually nearest messages with the shortest distance. Let n1 and n2 be
the number of copies of m1 and m2 in M∗

1 and M∗
2 , respectively. If n1 ≤ n2, then in one

iteration we add n1 pairs of (m∗
1, m∗

2) to μ, discard n1 copies of m1 and m2 from M∗
1 and

M∗
2 , respectively, and remove m1 from M1; in addition, if n1 = n2, then we also remove

m2 from M2. If n1 > n2, we add n2 copies of (m∗
1, m∗

2) to μ, update M∗
1 and M∗

2 , and
remove m2 from M2. Note that in each iteration we remove an element of M1, remove
an element of M2, or both.

The created matching can be viewed as a fractionated matching, where the matching
of a message (of one set) is partitioned between two or more messages (of the other set).
For instance, a message m1 may have n copies such that x

n of the copies are associated
with message m2 and n−x

n of the copies are associated with message m′
2.

5.2. Sorting Enhances Efficiency

There are at most |M1||M2| pairs (since messages are only removed from the two sets
during the process). If in each iteration we traverse the whole list of pairs to find the one
with the minimum distance, then computing μ takes O(|M2||M1||M2|) time, assuming
that |M1| ≤ |M2|, because there are at most |M1|+|M2| iterations. Alternatively, we can
initially sort (in ascending order) all |M1||M2| pairs by their distance. Now we have to
traverse the sorted list just once. In the ith iteration, we choose the next eligible pair
in sorted order—that is, the next pair such that neither of its messages has yet been
removed. Assuming that we can test eligibility of a pair in constant time, the whole
process takes O(|M1||M2| log(|M1||M2|)) time. Thus, computing μ in this way is more
efficient than an evaluation that does not sort the pairs, provided that log(|M1||M2|) ≤
|M2|. To see why this is true, note that log(|M1||M2|) ≤ log(|M2||M2|) because |M1| ≤
|M2|. Basic properties of logarithms imply that log(|M2||M2|) = 2 log(|M2|) < |M2|.
Hence, when |M1| > 0, we have log(|M1||M2|) < |M2|. Therefore, the preprocess of
sorting improves the efficiency.

When some messages are removed from either M1 or M2, new pairs may become
mutually nearest. If m1 ∈ M1 and m2 ∈ M2 are mutually nearest, then they remain so
even if some other messages are removed from either M1 or M2. By Proposition 5.3, for
the purpose of finding the required pair in each iteration, it is sufficient to sort the list
of pairs by increasing distance and traverse it once.

5.3. Computing the Mutually Nearest Matching

An algorithm to construct μ is presented in Figure 5. Initially, the algorithm creates
an array of all pairs of M1 × M2. The array is sorted by increasing distance. Instead of
actually constructing M∗

1 and M∗
2 , the hash map H1 counts how many occurrences of

each message of M1 are still eligible to be included in the constructed matching. The
hash map H2 does the same for messages of M2. The ith iteration of the loop of line 15
checks (in line 19) whether the ith pair is eligible, and if so, line 20 adds that pair to
the matching and lines 21 and 22 update H1 and H2, respectively.

The MND, denoted by distmn, is defined by means of the mutually nearest matching
μ. It is the average distances over all pairs of μ.

Definition 5.4 (Mutually Nearest Distance). Given two sets of messages M1 and M2,
the mutually nearest distance is the average of dist(m1, m2) over all pairs (m1, m2) of
the mutually nearest matching μ of M1 and M2.

Note that if M1 and M2 are not of equal size, then μ has |M1||M2| pairs.
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Fig. 5. Computing the mutually nearest matching μ of two sets M1 and M2.

5.4. On the Relationship Between MND and EMD

We now compare the MND to the EMD, which was presented in Section 4.3. Although
the computation of MND is much more efficient than that of EMD, frequently they
provide similar results. To see this, consider two sets M1 and M2, and let c2 be the
center of mass of M2. For simplicity, we assume that both sets have the number n of
messages. Let μmn and μem be the matchings created in the computation of MND and
EMD, respectively. Then for each (m1, m2) ∈ μmn, there exists a pair (m1, m′

2) ∈ μem,
because μem is a matching. Based on the triangle inequality,

dist(m1, m2) ≤ dist(m1, m′
2) + dist(m′

2, c2) + dist(c2, m2). (1)

By a slight abuse of notation, we consider the MND matching μmn and the EMD
matching μem as two-way functions that for a given m (in either M1 or M2) return its
matching message in the other set. Thus, m2 is μmn(μem(m′

2)). By Equation (1),

n · distmn(M1, M2) =
∑

(m1,m2)∈μmn

dist(m1, m2)

≤
∑

(m1,m′
2)∈μem

[dist(m1, m′
2) + dist(m′

2, c2) + dist(c2, μmn(μem(m′
2)))].
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Fig. 6. A quad-tree index (on the right) and the area it partitions, given a threshold of 2. The dashed lines
illustrate the correspondence between the nodes of the tree and the rectangular areas.

By definition,
∑

(m1,m′
2)∈μem

dist(m1, m′
2) = n · distem(M1, M2). Let dc2 be the aver-

age distance from messages of M2 to c2 (which is the center of mass of M2)—
that is, dc2 = (

∑
m∈M2

dist(m, c2))/n. Then
∑

(m1,m′
2)∈μem

dist(m′
2, c2) = n · dc2 . Simi-

larly,
∑

(m1,m′
2)∈μem

dist(c2, μmn(μem(m′
2))) = n · dc2 . It follows that n · distmn(M1, M2) ≤

n · distem(M1, M2) + 2n · dc2 (recall that distem denotes the EMD). Consequently,

distem(M1, M2) ≤ distmn(M1, M2) ≤ distem(M1, M2) + 2dc2 .

In other words, |distmn(M1, M2) − distem(M1, M2)| ≤ 2dc2 . Thus, when dc2 is small
(which happens frequently when considering messages of real users), the two distance
measures provide similar results, but differently from EMD, MND can be computed
efficiently.

6. QUAD-TREE DISTANCE

In this section, we present QTD, which is another new measure. We show how to
compute it and discuss its advantages.

A disadvantage of the previous methods, especially those that are based on computing
a matching, is that they cannot cope efficiently with changes to the sets of messages.
In particular, consider two sets M1 and M2 such that the distance d between them
has already been computed. An important question is how to incrementally compute
the distance between M1 and M2 ∪ {m} (where m is a new message added to M2) from
the previous value d, and similarly for M1 and M2 \ {m}. Next, we present a distance
measure that uses a quad-tree index and is highly efficient, even when the sets are
updated frequently.

Quad trees are index structures for sets of points on the plane [Samet 1984, 2005]. A
quad-tree index is constructed by recursively partitioning a rectangular area into four
equal parts. The four created rectangles are the children of the partitioned one. Each
point is associated with its immediately containing rectangle. The stopping condition
of the recursion is reached when the number of points in the rectangular area is below
a given threshold. For example, Figure 6 presents a quad tree that was created with a
threshold of 2 (i.e., every rectangle that contains more than two points is partitioned).
The tree index is constructed by creating a node from each rectangle. The root is the
initial rectangle. For each rectangle, its children are the four parts into which it was
divided.
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Fig. 7. Two quad trees (on the top) and the spatial distributions they yield (on the bottom). The numbers
are the masses of the leaves.

A node is a leaf if it has no children; otherwise, it is an internal node. The depth
of a node v, denoted by depth(v), is the length of the path from the root of the tree to
v—namely, it is 0 for the root itself, 1 for the children of the root, and so forth. The depth
of a tree is the maximum over the depths of its nodes. Due to efficiency considerations,
our implementation arbitrarily bounds the depth of the tree—that is, we do not divide
nodes with a depth that is equal to the bound.

Two quad trees are corresponding if their roots refer to rectangular areas with the
same coordinates. In other words, the upper left corners of the two rectangles have the
same coordinates, and so do the lower right corners. The correspondence relation is
extended from the roots to other nodes of the two trees as follows. Two nodes (one from
each tree) are corresponding if they represent the same rectangular area of the plane.

The common use of a quad tree is as an index structure. We, however, use quad trees
to define a distance measure for point sets. A quad tree can be used for outlining the
spatial distribution of the points on the plane. To that end, we define the mass of a
node as the percentage of the points that are inside its rectangular area. In Figure 7,
for example, the left tree has 10 points in total, so a node that contains 2 points has
a mass of 20%. The right tree indexes 8 points, so a node that contains 2 points has a
mass of 25%.

Consider two corresponding quad trees. We compare the distributions of their sets of
points by means of the masses of their nodes. Since the effect of each point should not be
considered more than once, we only compare a pair of nodes if they are corresponding
and (at least) one of them is a leaf. We say that such a pair of nodes is comparable.
For every two nodes that are comparable, we find the difference in their masses and
multiply it by the width of the rectangle they represent. The sum of the results over
all comparable pairs, denoted by distqt, is called the quad-tree distance.

Example 6.1. Consider the trees in Figure 7. Suppose that the width of the root is
1m, each child of the root has a width of 0.5m, and a child of a child has a width of ( 1

2 )2=
0.25m. Thus, the upper left quarter yields (|12.5 − 10| + |25 − 20| + |12.5 − 20|) ∗ 0.25.
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Fig. 8. Recursively computing the QTD for two corresponding nodes.

The upper right quarter contributes |(10 + 20) − 0| ∗ 0.5, and the lower left quarter
contributes |12.5 − 0| ∗ 0.5 (in these two cases, a comparable pair comprises children
of the root and has a width of 0.5m). The lower right quarter provides |(25 + 12.5) −
20| ∗ 0.5. Hence, the distance is (|12.5 − 10| + |25 − 20| + |12.5 − 20|) ∗ 0.25 + |30 − 0| ∗
0.5 + |12.5 − 0| ∗ 0.5 + |37.5 − 20| ∗ 0.5 = 33.75.

To intuitively understand the notion of QTD, consider two clusters of messages—one
in M1 and the other in M2—such that both are in the same area and have proportionally
similar sizes. In this case, the masses of the corresponding nodes are similar and hence
their contribution to distqt is small. On the other hand, if some area M1 has many
messages whereas M2 has only a few, then the difference in the masses will contribute
significantly to distqt.

QTD is effective in measuring spatial similarity because it takes into account the
distribution of the messages in every part of the considered area.

In a city, users move on roads and hence the actual travel distance from one point to
another is not Euclidean (or Haversine). The difference between the Euclidean and the
actual travel distances is called circuity [Ballou et al. 2002]. It decreases exponentially
as a function of the Euclidean distance between the points. Thus, for near points, the
expected circuity is larger than for distant ones. To adjust the QTD to this phenomenon,
we assume that the width decreases from a parent to a child by a factor of c

2 (rather
than the actual 1

2 ), where c is the circuity factor. In our experiments, we used c = 1.6
because it gave the best results.

We compute QTDs as follows. Consider two sets of messages M1 and M2, such that
all of their locations are contained in a bounding rectangle B. Suppose that T1 and T2
are the quad trees of M1 and M2, respectively, both with a root corresponding to B. The
computation of the distance is by calling Node-Distance(T1.root, T2.root), which is the
recursive method of Figure 8.

We maintain a quad tree for the messages of each user. Since a quad tree is an index,
updates are done efficiently. The quad tree also keeps the following information. Each
leaf v has the number n(v) of its messages. The quad tree stores the total number |M| of
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messages. Thus, when inserting or deleting a message, only M and n(v) of the relevant
leaf have to be changed. The mass of a leaf v is n(v)/|M|. For an internal node, the
number of its messages is the sum of n(v) over all of its descendant leaves v. Thus, the
method of Figure 8 can be efficiently implemented.

Two parameters control the efficiency and effectiveness of our method. The depth
bound determines the maximum number of levels in the tree. The partition threshold
sets the minimal number of points (messages) in a leaf that triggers a partition. These
two parameters affect the size of the tree and the number of messages in nodes. When
the tree is too large, the computation of the distance will be inefficient. When the tree is
too small, the QTD will be an imprecise measure of similarity, especially for users with
a relatively few messages. In the tests of Section 8, we used a depth bound of 6 and a
partition threshold of 3. These parameters provide a good balance between accuracy
and efficiency.

7. FINDING THE K-MOST-SIMILAR USERS UNDER THE MUTUALLY NEAREST MEASURE

In this section, we assume that U is a set of users and u is another user. The goal is to
compute the k users of U that are most similar to u. The naive approach is to calculate
the distance between u and every user of U. However, as shown in the experiments of
Section 8, this approach is costly for distmn and distnn. Hence, we present optimization
techniques for distmn (which is the more accurate method among distmn and distnn).

7.1. An Optimization Based on CMD

Our main technique is to use disto
cm, which is easily computed, to eliminate from

consideration some users of U , when the distance measure is distmn. This optimization
technique is based on the following proposition.

PROPOSITION 7.1. Let M1 and M2 be two sets of messages. Then disto
cm(M1, M2) ≤

distmn(M1, M2).

PROOF. Let |M1| = s, M1 = {m11, . . . , m1s}, |M2| = t, and M2 = {m21, . . . , m2t}. Recall
that each message mof M1 is duplicated t times in the set M∗

1 ; similarly, M∗
2 has s copies

of each message of M2. Moreover, all duplicates of a message m have the same location
as m. Thus, M1 and M∗

1 have the same center of mass, and similarly for M2 and M∗
2 .

Let c1 and c2 be the centers of mass of M1 and M2, respectively.
Note that each one of M∗

1 and M∗
2 has h = s · t messages. We denote the messages of

M∗
1 as m∗

1i and those of M∗
2 as m∗

2i (1 ≤ i ≤ h). Recall that the mutually nearest matching
μ of the sets M1 and M2 is actually a one-to-one correspondence between the messages
of M∗

1 and M∗
2 . We assume that the mutually nearest matching μ consists of the pairs

(m∗
1i, m∗

2i) where 1 ≤ i ≤ h (note that we can always order the messages so that it will
hold).

Next, we apply a linear transformation so that the line connecting c1 and c2 becomes
the new x-axis. This transformation requires applying just rotation and translation.
Hence, it does not change the distances between locations.

Since the centers of mass c1 and c2 are on the x-axis, we get that
∑s

i=1 m1i.y = 0 and∑t
j=1 m2 j .y = 0. Thus, the distance between c1 and c2 satisfies the following equations.

disto
cm(M1, M2) =

∣∣∣∣∣
∑t

j=1 m2 j .x

t
−

∑s
i=1 m1i.x

s

∣∣∣∣∣ (2)

=
∣∣∣∣∣
∑h

j=1 m∗
2 j .x

h
−

∑h
i=1 m∗

1i.x
h

∣∣∣∣∣ (3)
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=
∣∣∣∣∣
∑h

j=1(m∗
2 j .x − m∗

1 j .x)

h

∣∣∣∣∣ (4)

≤
∑h

j=1

∣∣∣m∗
2 j .x − m∗

1 j .x
∣∣∣

h
(5)

≤
∑h

j=1 dist(m∗
2 j, m∗

1 j)

h
(6)

= distmn(M1, M2) (7)

Equation (2) holds because the centers of mass are on the x-axis, so we only need
to sum the x coordinates of the locations. Equation (3) follows from the fact that M1
and M∗

1 have the same center of mass and similarly for M2 and M∗
2 . Equations (4)

and (5) are obvious. Since actual distances should also take the y coordinates into
account, Equation (6) holds. Finally, Equation (7) holds because the pairs (m∗

1i, m∗
2i), for

1 ≤ i ≤ h, constitute the mutually nearest matching μ. �

To efficiently find the k users of U that are most similar to u, we apply Proposition 7.1
as follows. Let Mu and M1, . . . , Mp be the sets of messages of u and of the users of
U , respectively. First, we compute the centers of mass of all of the sets. Next, we sort
M1, . . . , Mp according to the distances between their centers of mass and that of Mu. Let
S = Mj1 , . . . , Mjp be the resulting sorted list—that is, disto

cm(Mu, Mja) ≤ disto
cm(Mu, Mjb)

for all 1 ≤ a < b ≤ p.
To compute the k-most-similar users, we use a priority queue H of size k that is

initialized to contain Mj1 , . . . , Mjk. The priority is determined by the MND distmn from
Mu; a longer distance means a higher priority. For i > k, sets are added to H according
to their order in S. When adding Mji , we first compute its MND distmn to the set Mf at
the top of H.

If distmn(Mf , Mu) ≤ disto
cm(Mji , Mu), then H contains the k-most-similar users. In

proof, S is sorted and so disto
cm(Mji , Mu) ≤ disto

cm(Mji′ , Mu) for all i′ ≥ i. Accord-
ing to Proposition 7.1, disto

cm(Mji′ , Mu) ≤ distmn(Mji′ , Mu). Hence, distmn(Mf , Mu) ≤
distmn(Mji′ , Mu) for all i′ ≥ i. The set Mf of H has the longest MND to Mu (among the
sets of H). Hence, the claim is true and we stop.

If distmn(Mf , Mu) > disto
cm(Mji , Mu), then first we compute distmn(Mji , Mu). Then we

test whether distmn(Mf , Mu) > distmn(Mji , Mu). If so, we insert Mji into H and remove
Mf . The code of this algorithm is presented in Figure 9.

We now analyze the complexity of the algorithm. Under the assumption that the
number of messages of each user is bounded, the computation of either distmn or disto

cm
takes O(1) time. Hence, the time complexity of the algorithm is O(|U | log |U |) because
of the sort of U in line 7. Note that other than the sort, the time complexity of the rest
of the algorithm is linear in the size of U . If the maximal number x of messages of a
user is unbounded, then the computation of disto

cm is linear in x and that of distmn takes
O(x2 log x) time. The distances with respect to u are computed for each user of U—that
is, for |U | users. Thus, the overall time complexity is O(|U |log|U | + |U |x2 log x).

7.2. Early Termination Optimization

Recall that the algorithm of Figure 5 is needed for computing the MND between two
sets. We modify this algorithm so that in each iteration of line 15, it computes the
distance d according to the matching found thus far. In other words, at the end of each
iteration, we get d = ∑

(m1,m2)∈μ dist(m1, m2). It thus follows that d
i is a lower bound on
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Fig. 9. Computing the k-most-similar users, for a given user u, according to distmn.

the MND at the end of the ith iteration—that is, d
i ≤ distmn(M1, M2), because pairs

(m1, m2) are added to μ in the order of ascending distance between m1 and m2.
Our second optimization uses the preceding lower bound for an early-termination test

when employing the algorithm of Figure 5 in the process of finding the k-most-similar
users. As earlier, we use a priority queue H that stores the k-most-similar users found
thus far. Initially, we insert into H the first k sets for which we have computed the MND
to Mu. Suppose that Mu′ is the next set for which we compute distmn(Mu′, Mu). We can
terminate the computation as soon as d

i > distmn(Mf , Mu), where Mf is the set at the
top of H (i.e., farthest away from Mu). If this test does not cause an early termination
and distmn(Mf , Mu) > distmn(Mu′ , Mu) at the end of the matching computation, then we
insert Mu′ into H and remove Mf .

8. EXPERIMENTAL EVALUATION

We tested our methods on real-world data. The goals of our experiments were (1) to
evaluate the effectiveness of the different measures in terms of the correlation between
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the distance and user similarity, (2) to determine the efficiency of the distance measures
by comparing the running times of finding the k-most-similar users, and (3) to check
the effect of our optimization techniques on the running time of the computation of
distmn.

8.1. Description of the Tests

We now describe the setting of the tests and our methodology.

8.1.1. Experimental Setting. Our experiments were conducted over geotagged messages
that were posted on Twitter (tweets) from Los Angeles (LA), New York City (NYC),
and London. Each one of the three datasets contained more than 200,000 messages
of approximately 25,000 users. All experiments were performed on all three datasets,
and in all cases the results were the same, with only negligible differences between the
datasets. To avoid repetition, we only present the results for the LA dataset.

In the LA dataset, for users with 5 messages or more, the average number of mes-
sages per user is 10.5, with a standard deviation of 0.81. The number of unique lo-
cations from which messages are posted, per user, is 8.8, with a standard deviation
of 0.87. For users with at least 10 messages, the average number of messages per
user is 21.1, with a standard deviation of 0.02. The average number of unique places
from which messages were posted, per user, is 17.15, with a standard deviation of
0.42. This shows that most of the users post most of their messages from various
locations.

The experiments were conducted on a machine equipped with a Core i5-3230M
2.6GHz processor, 8GB RAM, and a Windows 8 64-bit operating system. The code is
written in Java and was executed using a 2GB heap (i.e., the JVM was run with the
parameters -Xms2048M -Xmx2048M).

8.1.2. Methodology. To evaluate the effectiveness of a distance measure (i.e., its corre-
lation with similarity among users), we determine its accuracy, as defined in Section 3.
To obtain the data for experimentally measuring accuracy, we apply the following idea
of splitting. We assume that there is a given set U of distinct users, each one with
her own set of messages. (Recall that each of our three datasets is such a U .) A user
u ∈ U is split by randomly dividing the set of messages Mu into two disjoint parts
M1

u and M2
u—that is, M1

u ∩ M2
u = ∅ and M1

u ∪ M2
u = Mu. We denote by u1 and u2 the

virtual users whose sets of messages are M1
u and M2

u , respectively. Since the splitting is
done randomly, the two virtual users u1 and u2 should have the same characteristics.
Therefore, we say that u1 is the matching user of u2 and vice versa. Let Û be the set of
all virtual users (i.e., those obtained by splitting each u ∈ U ).

We measure accuracy as follows. For each user u ∈ U , we create the set Û u by
removing u2 from Û (i.e., the matching user of u1), whereas all other virtual users
remain in Û u. Now we test whether u1 is one of the k-most-similar users of u2 among
those of Û u. Recall that if the answer is positive, we call it a success. The rationale
for considering it a success is that u1 and u2 have the same characteristics (these are
messages of the same user) and thus should be deemed similar. We repeat this test for
each u ∈ U . The percentage of successes (in the |U | tests) is the measured accuracy. It
should be emphasized that the splitting is done randomly, and therefore the measured
accuracy is unbiased.

We also measure the running time as follows. For a given u2, a search is the task
of finding the k-most-similar users of u2 among those of Û u. We report the average
running time of a search over all u ∈ U .
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Fig. 10. Accuracy of the versions of CMD as a func-
tion of k.

Fig. 11. Accuracy of the versions of CMD per the
number of virtual users.

We now list the parameters involved in our experiments and their default values:

—The threshold τ is the minimal number of messages that a user must have before
the splitting is done. The default is τ = 10.

—The set U of users has a default size of 1,000, which after the split provides 2,000
virtual users. The users of U are uniformly chosen from the members of the LA
dataset (Section 8.1.1) that satisfy the threshold τ .

—The number k of answers (i.e., the k-most-similar users). The default is k = 4.
—The portion p of messages in the larger subset when the splitting is done. The default

is p = 0.5 (i.e., the splitting is into two subsets of equal size).

In the experiments, we measure accuracy and running times. We do it by varying
one parameter while keeping all others at their default values.

8.2. Results

We now present the results of our experiments. First, in Section 8.2.1, we empirically
compare the different variations of CMD and NND. Second, in Sections 8.2.2 and 8.2.3,
we compare the effectiveness and the efficiency of all methods as a function of the
threshold τ , the number of users |U |, the value k, and the portion p. Third, the effect of
the optimization on MND is shown in Section 8.2.4. Finally, in Section 8.2.5, we present
the running time of building the quad-tree index.

8.2.1. Testing Versions of Existing Methods. In Section 4, we presented three versions of
the CMD and two versions of the NND. Our first set of tests compares the different
versions of the methods to simplify the comparison of existing methods to the novel
ones.

Figures 10 and 11 show the accuracy of the three versions of the CMD. We denote by
CMD_L, CMD_S, and SMD_O the similarity detection using distl

cm, dists
cm, and disto

cm,
respectively. In Figure 10, the accuracy is presented as a function of k. In Figure 11, the
accuracy is measured as a function of the number of users in the initial set U . In both
cases, CMD_O is more accurate than the other two versions of CMD. The reason for
this is that CMD_O reduces the effect of outliers in comparison to the other methods.

Figures 12 and 13 present the running times (in milliseconds) of the three versions
of CMD as a function of k and as a function of |U |, respectively. Clearly, CMD_O is more
efficient than the other two versions, because it merely computes a distance between
the two centers of mass rather than computing the distance for each point in one of
the sets. These experiments clearly show that CMD_O is a better method than CMD_L
and CMD_S, so in the following experiments we will only compare the new methods to
CMD_O (and omit CMD_L and CMD_S).
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Fig. 12. Running times of the versions of CMD as a
function of k.

Fig. 13. Running times of the CMD versions per the
number of virtual users.

Fig. 14. Accuracy of the versions of NND as a func-
tion of k.

Fig. 15. Accuracy of the versions of NND per the
number of virtual users.

Fig. 16. Running times of the versions of NND as a
function of k.

Fig. 17. Running times of the NND versions per the
number of virtual users.

To compare the two versions of NND, we computed the accuracy and the running
times of using distl

nn (denoted by NND_L) and dists
nn (denoted by NND_S) as a function

of k and as a function of |U |. Figures 14 through 17 show that NND_L is slightly more
accurate than NND_S, but it is also slightly less efficient than NND_S, so for NND no
version completely outperforms the other one.

8.2.2. Effectiveness. We now present experiments with the new methods, including
comparison to existing ones. Figure 18 presents the accuracy of the different methods
as a function of k. Figure 19 presents the accuracy as a function of the number of virtual
users. Figure 20 presents the accuracy for different partitions of the users. Clearly,
CMD_O is the least accurate method. The HD also has low accuracy. The NND_L
and NND_S methods are fair, but MND and the QTD outperform them. Clearly, QTD
provides the highest accuracy among all methods we tested.
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Fig. 18. Accuracy as a function of k. Fig. 19. Accuracy as a function of the number of
virtual users.

Table II. Running Times, in Milliseconds, of QTD and
CMD as a Function of k

k 1 4 7 10 13 16

QTD 1.00 1.00 0.99 1.05 1.00 1.00
CMD 3.57 3.61 3.38 3.49 3.46 3.46

Table III. Running Times, in Milliseconds, of QTD and SMD as a
Function of the Number of Users

Number of users 400 1,200 2,000 2,800 3,600 4,400

QTD 0.18 0.48 0.99 1.64 2.35 3.07
CMD 0.65 2.02 3.53 4.83 6.38 7.78

Figure 20 is the first experiment in which each set of messages is partitioned into
unequal parts. A portion of 0.7 means that for each user u, we partition Mu into two
sets: one of size 0.3|Mu| and the other of size 0.7|Mu|. Similarly, for a portion of 0.8, the
partition is into two sets having sizes that are 20% and 80% of the original one. In this
test, QTD failed to create an index for very small sets due to the parameters we used
for the construction of the tree. For example, consider a user with 10 messages that
is partitioned into a virtual user with 8 messages and a virtual user with 2 messages.
The tree cannot have a leaf with just 2 messages, so the method fails. For a portion of
0.8, NND_S provides the best results because as the size of the smaller set decreases,
it becomes easier to find a nearest neighbor in the larger part and the accuracy grows.

Figure 21 presents the accuracy as a function of the threshold τ (i.e., the minimal
number of messages that a user can have). Obviously, when the threshold increases,
it is easier to find the matching virtual user of a given one. However, we can see that
HD is less affected than CMD_L when increasing the threshold, because the former is
determined based on a single point. Consequently, when the number of messages per
user is large, HD is the least effective method.

8.2.3. Efficiency. To determine the efficiency of the distance measures, we tested the
running times in various cases. Figure 22 and Table II present the running times
as a function of k. Each point on the graph (and each value presented in the table)
is the average running time over 1,000 searches. Figure 23 and Table III present
the running time as a function of the number of users. Figure 24 and Table IV present
the running times as a function of the partition sizes. Figure 25 and Table V present the
running times as a function of the threshold. In all cases, HD is the least efficient and
the least scalable measure. The two versions of NND are also quite inefficient. MND
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Table IV. Running Times, in
Milliseconds, of QTD and CMD for

Different Partition Sizes

Portion 0.5 0.7 0.8

QTD 0.97 0.95 0.90
CMD 3.61 3.46 3.40

Table V. Running Times, in Milliseconds, of QTD and
CMD as a Function of the Threshold

Threshold 8 12 18 25 35 50

QTD 0.80 0.84 0.92 0.91 0.94 0.99
CMD 3.64 3.18 3.79 4.42 5.09 6.18

Fig. 20. Accuracy as a function of the partition of
users into virtual users.

Fig. 21. Accuracy as a function of the threshold.

Fig. 22. Running times as a function of k. Fig. 23. Running times as a function of the number
of virtual users.

Fig. 24. Running times as a function of the partition
sizes.

Fig. 25. Running times as a function of the thresh-
old.
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Fig. 26. Running times of MND, with and without
optimizations, as a function of k.

Fig. 27. Running times of MND, with and without
optimizations, as a function of the number of virtual
users.

Table VI. Build Time, in Milliseconds, of the
Quad-Tree Index as a Function of the

Number of Messages

No. of messages 25 50 100 500
Time (milliseconds) 2 3 5 20

with the proposed optimizations is better than NND and has acceptable running times.
The methods CMD_O and QTD are highly efficient and scalable. However, the running
times of QTD are for the case where the index is already built. In Section 8.2.5, we
discuss the time needed for the index construction.

8.2.4. The Effect of the Optimizations of MND. In Section 7, we developed optimizations
for MND. Their effect on the running times as a function of k and as a function of
the number of users are presented in Figures 26 and 27, respectively. It can be seen
that the optimization techniques significantly reduce the running time and improve
the scalability of MND.

8.2.5. Building the Quad-Tree Index. The QTD is effective and efficient. However, if the
index does not exist, it should be built. Recall that a separate quad tree should be built
for each user, and the time it takes depends on the number of messages that the user
has. Table VI presents the time needed for constructing a quad tree as a function of
the number of messages. (Note that the parameters of Section 8.1.2 are irrelevant in
this experiment.)

Building the index for thousands of users can be done in a few seconds, yet if the
index does not exist, using MND, with the optimizations, is likely to be more efficient
than building the index (i.e., compare the times of Table VI to those of Figure 27).

8.2.6. Validity of the Methodology. One conclusion from our experiments is that the places
of user activities, in online geosocial networking sites, are not arbitrary. In other words,
if the locations in our dataset were scattered uniformly over the area without any
statistical significance, none of our methods could have distinguished between different
users merely according to their messages. The ability of our methods to distinguish
between users, with high accuracy, shows that user activities have unique patterns.
Hence, using the locations of messages to detect similarity among users is a valid and
useful approach. Figure 28 provides examples of messages of users to visualize this.

To show this formally, we use the p-value—a common probability measure in statis-
tical hypothesis tests [Lehmann and Romano 2005]. In our validation, the null hypoth-
esis that we try to reject is the following: for a user u chosen arbitrarily, all users have
the same probability of being in the set of the k-most-similar users of u. The p-value is
the probability of obtaining test results that are at least as high as the actual results,
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Fig. 28. Messages of real users and the quad trees that were built for them.

assuming that the null hypothesis holds. Typically, when the p-value is less than 0.05,
the null hypothesis is deemed highly unlikely.

Suppose that we partition a user u into u1 and u2, and compare u2 to N users.
According to the null hypothesis, the probability that u1 is in the k-most-similar users
of u2 is k/N. Since tests are independent, the probability of success in � tests is (k/N)�.

Suppose that we conduct 1,000 independent tests using a distance measure that has
a 60% success rate (e.g., CMD_O), where N = 1,000 and k = 10. In this case, we would
observe success in 600 out of the 1,000 tests. What is the probability of having 600 or
more successes under the null hypothesis? The p-value in this case is

1000∑
i=600

(
k
N

)i(
1 − k

N

)(1000−i)

=
1000∑

i=600

(0.01)i(0.99)(1000−i)  0.05.

This clearly rejects the null hypothesis and shows that geosocial similarity is statisti-
cally significant. For methods that are more accurate than CMD_O, such as NND_L,
MND, and QTD, the p-value is even lower and the statistical significance is higher.

9. CONCLUSIONS

This work studies the problem of finding similarity among users based on the loca-
tions of their activities (e.g., posting messages) in social media. We discussed common
applications that require effective methods for detecting geosocial similarity, such as
sociospatial analysis, recommendation systems, identity detection, and privacy protec-
tion. We formulated geosocial similarity in terms of measuring the distance between
sets of points. We discussed four existing measures, namely Hausdorff, three variants
of center of mass, two variants of nearest neighbor, and EMD. We explained why these
measures (except for the last one) cannot accurately detect geosocial similarity. As
for EMD, it is accurate but not efficient. These conclusions are also supported by our
experiments that are summarized later in this section.

We introduced two novel measures that are designed to handle geosocial similarity
accurately and efficiently. The first is MND, which is suitable for ad hoc tasks. When
sets have different sizes, it is not obvious how to apply this distance. We showed how
to define and efficiently compute it in the general case. Furthermore, we developed
optimization techniques for finding the k-most-similar users (to a given one) according
to this distance measure. Our experiments show the importance of these optimizations,
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which yield a speedup of up to 10-fold. We proved that the mutually nearest measure
is a good approximation of the EMD (even though it is much more efficient).

Although a quad tree is a common index structure, using it as a distance measure
between sets is a novel idea. This measure is highly accurate and very efficient. It
incurs the additional cost of building the indexes, but in many applications they may
already exist, and if so, this is the preferred method.

To compare the distance measures, we introduced a novel test methodology and con-
firmed its validity in terms of its p-value. We believe that this methodology could be
useful also in the context of other research problems and hence is an important contri-
bution in and of itself. Using this methodology and Twitter data, we tested the accuracy
and running time (of finding the k-most-similar users) for each distance measure.

Our experiments clearly indicate that the HD and CMD measures are inaccurate.
In some experiments, their accuracy was less than 70% compared to 90% for the MND
and QTD measures. For users with at least 50 messages, the accuracy of HD and CMD
was about 70% and 75%, respectively, compared to 90% and 95% for the MND and QTD
measures, respectively.

As for efficiency, for users with at least 50 messages, the running times of the CMD
and QTD measures were instantaneous—that is, a few milliseconds. For the MND and
the HD measures, the running times were approximately 1 and 5 seconds, respectively.
Thus, the quad-tree and mutually nearest measures are superior to HD in terms of
both accuracy and efficiency. Moreover, as the number of messages per user increases,
this superiority grows. This is an important discovery due to the high popularity of the
HD for comparing sets of points.

We showed that the two versions of the NND are only moderately accurate and
efficient. They are outperformed, in terms of both accuracy and efficiency, by the MND
measure. For example, for users with at least 50 messages, the accuracy of (both
versions of) nearest neighbor was about 80% compared to 90% for the MND. The
running times were approximately 1 and 2.5 seconds for MND and for (both versions
of) the NND measure, respectively. These results are important, because the NND is
frequently used in various tasks and is supported by many systems.

Future work includes generalizing our measures to take into account geographic
properties of visited entities, such as their types, the semantics of locations, and the
posting times, as well as combining locations with geographically related textual con-
tent of messages. Another topic for future work is how to use the edges of the social
network (i.e., the social relationships between users) to generalize the measures. Note
that taking into account the semantics of locations, the posting times, the textual con-
tent of messages, and the edges of the social network when computing the distance
measures may significantly increase the running time and would limit the usage to
datasets that can provide these features. An interesting question is whether existing
measures (e.g., HD and NND) can be modified so that they could accurately serve as
methods for geosocial similarity.
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