

Computer Science faculty, Technion, Israel

A SEARCH ON THE WEB

the ranking game

GameRankings - Video Game Reviews from around the Internet

www.gamerankings.com/ -

Founded in 1999, GameRankings indexes over 240000 video game reviews from both online and offline sources, plus over 230000 other news articles.

College Rankings - Reed College

https://www.reed.edu/apply/college-rankings.html -

College Rankings. campus banner photo. Reed and **the Rankings Game**. Why doesn't Reed participate in U.S. News & World Report's college rankings?

[PDF] The University Rankings Game - Lehigh University

www.lehigh.edu/~incbeug/.../Dearden_Grewal_Lilien_Rankings_Game_May_2008.p... ▼

by R Grewal - 2008 - Cited by 52 - Related articles The University Rankings Game: Modeling the Competition among Universities for Ranking. Rajdeep Grewal. James A. Dearden. Gary L. Lilien. May 2008 ...

Gaming the College Rankings - The New York Times

www.nytimes.com/2012/02/01/education/gaming-the-college-rankings.html ▼

Feb 1, 2012 - Any love-hate relationship must have its share of pain, so the academic world, in its obsession with college **rankings**, is suitably dismayed by ...

Top Core PC Games | US & Europe | Newzoo

https://newzoo.com/insights/rankings/top-20-core-pc-games/ ▼

Every month Newzoo and Overwolf publish the Top 20 Core PC **Games** in the US and Europe. **The ranking** is based on the number of unique sessions during a ...

KEYWORD STUFFING

One approach for Search Engine Optimization (SEO)

EXAMPLE

PROBLEMS

- Search engine's performance worsens due to the competition
- Degraded coherency
- Hard to distinguish between white/black hat SEO

Goal:

Can the search engine reduce the motivation for "bad" content manipulations?

OUR CONTRIBUTION

- <u>Developed formal methodology</u> to measure the tolerance of a ranking scheme to keyword stuffing
- Showed that <u>competition may degrade retrieval effectiveness</u>
- <u>Offered a probabilistic ranking scheme</u> and showed <u>an</u> <u>indication</u> for it to reduce the incentive to manipulate the content

INSPIRED BY GAME THEORY

- Documents are strategic players
 - Profit derived by rank
 - Cost by SEO actions
 - Utility = Profit Cost
- Competition is a game:
 - Each document "plays" in its turn perform the Best Response
 - A round all the documents have a change to act

FORMAL MODEL

- Given a query $q \in Q$, and a set of documents \mathcal{D}
- Ranking function: D×Q → [0,1]
 e.g., BM25
- Profit: $P: \{1, \dots, n\} \longrightarrow \mathbb{R}^+$

• e.g., reciprocal ranking (p(i) = 1/i)

- Cost: $C: \mathcal{D} \times \mathcal{D} \longrightarrow \mathbb{R}^+$
 - representing cost of SEO
 - e.g., fixed cost per stuffed term
- Utility: $U_i(d'_i) = E(P(r(d'_i))) C(d'_i, d_i)$
 - expectancy is explained later on

ASSUMPTIONS

- Ranking function is known to all the documents
- No content deletions
- Only query terms are stuffed
- Documents optimize for a single query

SIMULATION

BEST RESPONSE

- A document should iterate over all possible modifications
 - however, this number is large
 - when limiting the number of stuffed terms to k

•
$$CC_n^k = \binom{n+k+1}{n}$$
 where there are n query terms

• still large...

BEST RESPONSE

Greedy algorithm:

iteratively add the term which locally maximizes the Ranking score

eventually return the revised document or the original one if no improvement was found

AN EXAMPLE OF COMPETITION

- $\Sigma = \{a, b, c, d\}, q = \{a, b\}, d_1 = \{a\}, d_2 = \{b, c\}$
- RSV Query Likelihood with Laplace smoothing

- RSV $(d_1,q) = \frac{2}{5} * \frac{1}{5} = \frac{2}{25}$, RSV $(d_2,q) = \frac{1}{6} * \frac{2}{6} = \frac{2}{36}$
- $d'_2 = \{a, b, c\} \Longrightarrow \text{RSV}(d'_2, q) = \frac{2}{7} * \frac{2}{7} = \frac{4}{49} > \frac{2}{25}$
- $d'_1 = \{a, b\} \Longrightarrow \operatorname{RSV}(d'_1, q) = \frac{2}{6} * \frac{2}{6} = \frac{4}{36} > \frac{4}{49}$
- and the second player cannot improve its utility from stuffing

DETERMINISTIC RANKING

PROBABILISTIC RANKING

PROBABILISTIC RANKING

PROBABILISTIC RANKING

DATASET

- AP news & Wall Street Journal
- Including TREC's relevance judgments (79 queries)
- Settings:
 - *profit* reciprocal ranking (p(i) = 1/i)
 - fixed cost 0.05 per term
 - 20 players (documents)
 - up to 10 rounds
 - BM25 as a deterministic ranking function
 - Probabilistic ranking using 10k Monte-Carlo simulations

KEYWORD STUFFING EXPERIMENT

- ρ is decreasing \longrightarrow stuffing is less profitable
- In high values of ρ highly-ranked pages stuff terms

CONVERGENCE EXPERIMENT

 Randomness in the ranking process limits the competition between web pages

RELEVANCE EXPERIMENT

No Competition	P@3	P@5	P@10	\mathbf{MAP}^1
Initial Set	0.5105	0.4835	0.4734	0.0655
Det. Ranking	0.4557	0.4481	0.4341	0.0591

- <u>Decrease in relevance</u> across all metrics due to the competition
 - The ranks of irrelevant pages improve throughout the competition
- Due to small corpus size not significant statistically

¹values are low since the MAP was calculate over 20 documents

RELEVANCE EXPERIMENT

	P@3	P@5	P@10	\mathbf{MAP}^1
Initial Set	0.5105	0.4835	0.4734	0.0655
Det.	0.4557	0.4481	0.4341	0.0591
Prob. (0.9)	0.4492	0.4490	0.4449	0.0590

- <u>Decrease in relevance</u> across all metrics due to the competition
 - Irrelevant pages ranks improve throughout the competition
- Due to small corpus size not significant statistically

¹values are low since the MAP was calculate over 20 documents

CONCLUSIONS

- We <u>built a methodology</u> for estimating techniques for handling web spam
- Inspired by game theory <u>pages are strategic players</u> with profit, cost and utility
- <u>Illustrated the system on probabilistic ranking</u>, and show it reduces spam with limited implication on search quality

FUTURE WORK

- Additional and bigger datasets
 - Including web pages
 - Optimized for SEO
- Comparison to other spam-aware methods
- Extend the framework to other SEO operations e.g., link farming
 - Can the probabilistic approach reduce manipulations?

