Understanding User Behavior From Online Traces

ELAD KRAVI

ADVISORS YARON KANZA BENNY KIMELFELD

The Data Revolution

People share large amount of data

- Explicitly and implicitly
- Attributes collected including
 - locations, timestamps, textual content etc.

A great opportunity to *improve* online services, to *enhance* existing infrastucture and to *engage* users

Goals

Leverage analysis of online traces for

- Improving measurement of users' similarity
- Enhancing online services
- Engaging online activity

What affects users online behavior?

- Do people have *different needs* in *different places*?
- How do *social relationships* affect online behavior?

YAHC

Outline

Location and text effect Social networking effect

Location and Text Effect

Location	The City Nexus tool [SIGSPATIAL 2014]	
Textual	Multi-Clicked Queries [under review]	
Location + Textual	Familiarity of environment [SIGIR 2015]	Next
	Correlation Between Textual Content and Geospatial Locations [GeoRich 2014]	

Does the familiarity of environment matter?

	pizza	٩
Pizza	pizza hut pizza recipe how to make pizza pizza dough recipe pizza hut menu pizza hut menu pizza toppings pizza movie pizza hut delivery	

- Pizza dough?
 - Pizza place?

A note on the dataset

Our dataset included <u>more than a billion</u> queries log traces of a popular commercial search engine

Using these traces one can calculate the rank of query auto-completion completion terms

Query	#		Query	auto-completion	r
"pizza dough"	5		pizza	dough	
'pizza place"	3	•		place	

Hypothesis: Information need is affected by *familiarity* of the environment

Category	Familiar	Unfamiliar
pizza	dough:3, places:5	places:3, dough:5
gas	fireplace:3, station:6	station:3, fireplace:8
wild	rice:2, horse:5	horse:2, rice:4

What is a *location*?

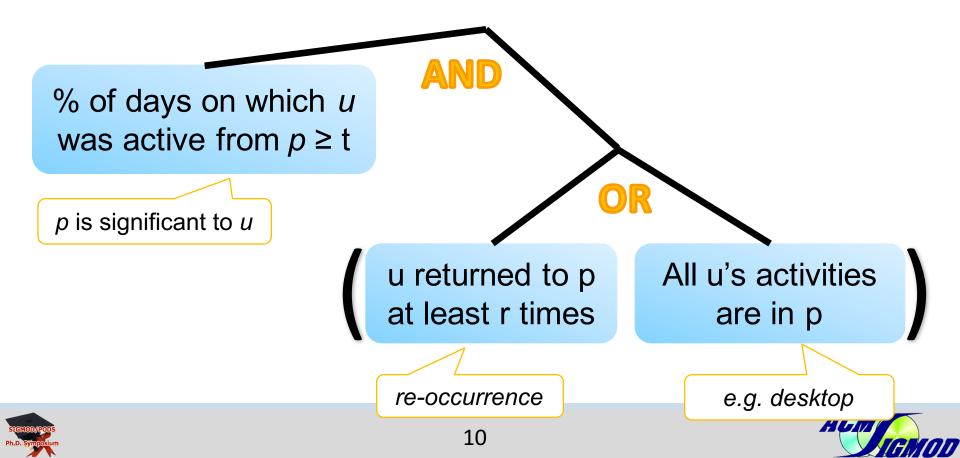
Using the IP address

What is a *familiar* location?

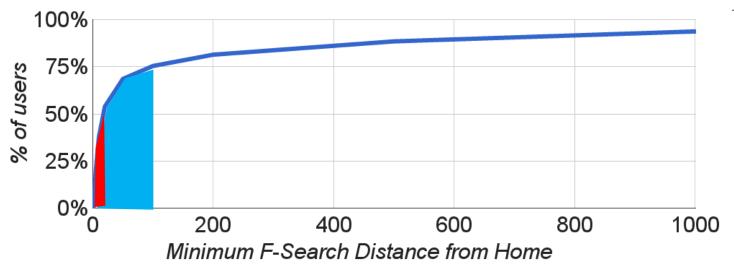
- Significance
- Travels

How to *verify* that the model works?

A place p is familiar to a user u if:



Distance from Declared Home



For **53.9% of the users**, the distance from declared home was **smaller than 20** KMs

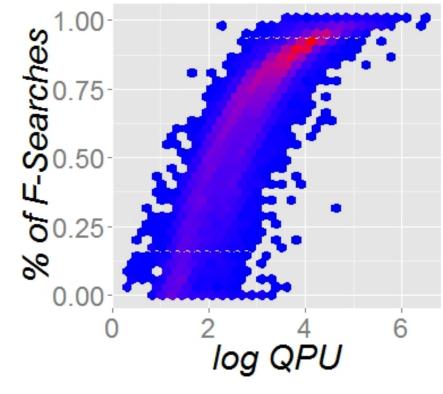
For **75.4% of the users** it was **smaller than 100** kilometers

Queries Per Unique Users (QPU)

A place having *large QPU* (many queries few users) is expected to obtain *many familiar queries*

and vice versa

Queries Per Unique Users (QPU)



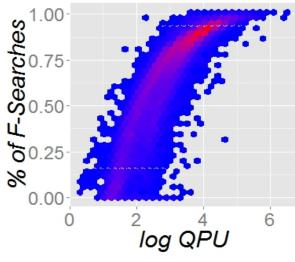
A clear correlation is observed

HIMI

Compare To A Baseline Model

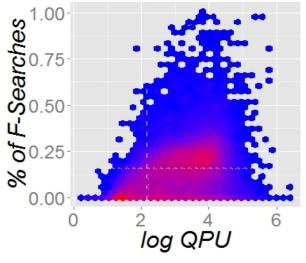
Consider the following baseline:

• A *familiar* location is every place around 20 KM from declared home



Our Model

A clear correlation can be seen



20 KM Model

No correlation can be seen

Difference in Language Models

Uni-grams			
<i>F-</i> Search	<i>U-</i> Search		
facebook	google		
sale	restaurant		
free	schedule		
games	football		
ebay	ny		
how	lyrics		
login	ct		
online	store		
craiglist	movie		
recipes	hours		
porn	locations		
tube	mall		

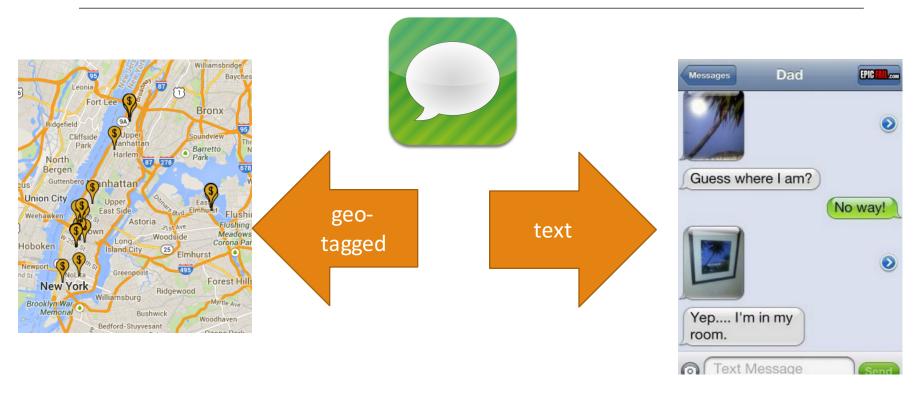
Bi-grams			
<i>F-</i> Search	<i>U-</i> Search		
for sale	new york		
how to	phone number		
facebook login	google search		
to make	new jersey		
homes for	high school		
cool math	how many		
you tube	hobby lobby		
sales in	in new		
funeral home	football schedule		
real estate	r us		
black friday	movie theater		
for kids	nfl scores		

AG

Location and Text Effect

Location	The City Nexus tool [SIGSPATIAL 2014]	
Textual	Multi-Clicked Queries [under review]	
Location +	Familiarity of environment [SIGIR 2015]	
Textual	Correlation Between Textual Content and Geospatial Locations [GeoRich 2014]	Next

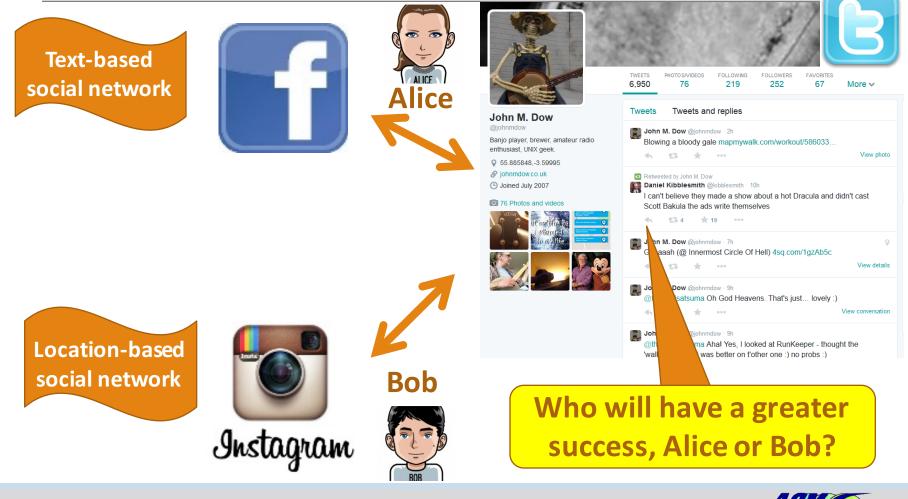
Posts Origin in Microblogs



Correlation?

FMOD

Application #1: Associating Posts from Different Networks



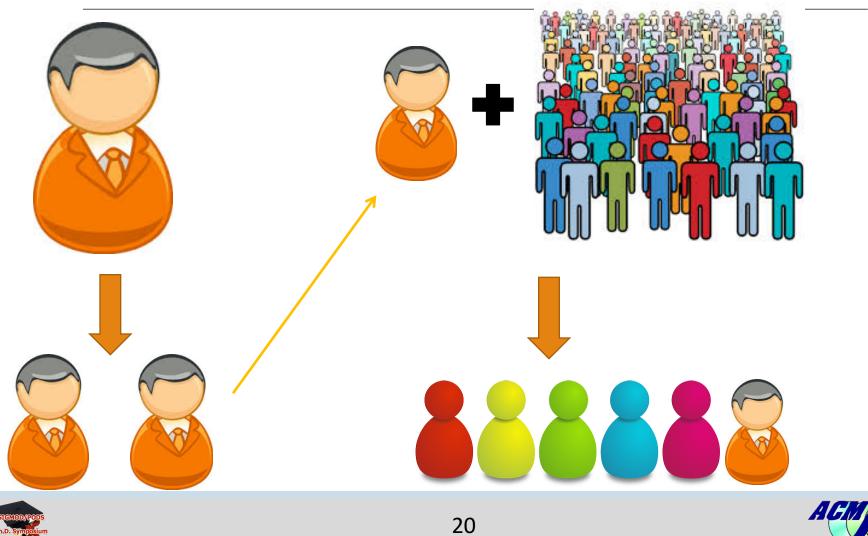
An Example – Measuring User's Similarity

We compared between similarity based on the following measures:

- only the *locations* of the messages using *nearest neighbor distance*
- only the <u>content</u> of the messages using **TF-IDF**

<u>combination</u> of **both**

Identification Test



GMOD

Problem Definition – Identification test

A post p is denoted by p=(l,c)

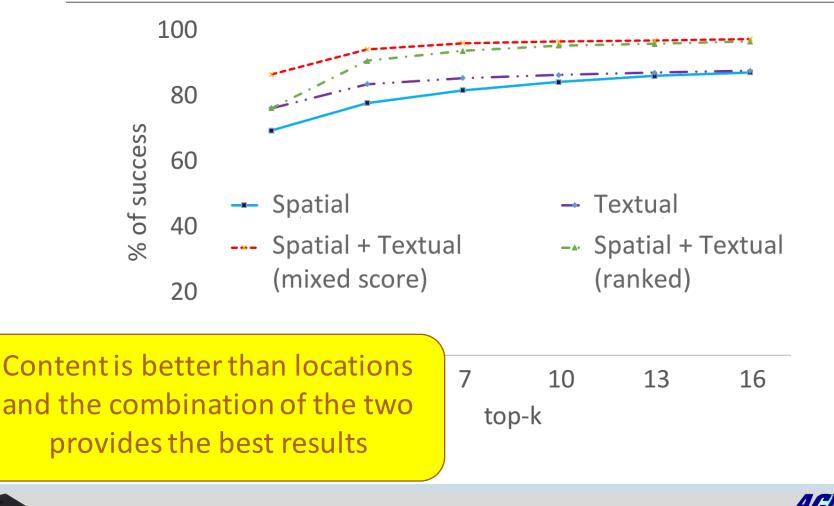
- /- location, on sphere
- C- textual content

Each user u is associated with the set p_u of her posts

- Split u into u_1, u_2 , such that $p_{u_1} \cup p_{u_2} = p_u$ and $p_{u_1} \cap p_{u_2} = \emptyset$
- Let *K* be the *k-most-similar* users to u_1 among $U \cup u_2$
- Consider success as the case where $u_2 \in K$ and failure otherwise

Goal – maximize success rate

Accuracy as a Function of k



Outline

Location and text effectSocial networking effect

Social Networks

Recommending content items to community owners [SIGIR 2014]

 Using recommender-system approach to recommend content items to owners of online communities in a corporate social network

Measuring the effect on activity level [TOCHI 2015]

• Further extending previous work to examine the effect of recommendation over the activity in the communities

Main Challenges

Formal modeling that allows automatic detection

- avoiding detection of erroneous patterns
- yet, portraying the diversity of human behavior

Verifying a proposed model

lack of ground truth and tagged data

Summary

We examined the utilization of spatial, textual and social information toward understanding online behavior

- Spatial and Textual: jointly-visited locations, multi-clicks, familiarity of environment and similarity between users
- Social: recommending content items to community owners, engaging community's activity

Leveraging online data one can Improve measurement of *users' similarity,* enhance *online services* and engage *online activity*

Future Work

Building tools for finding complex patterns that combine traces from different datasets

For example - improving web search by using social activity

Developing infrastructure for allowing users to define their models of online behavior patterns, and later on detecting these patterns on real datasets

Thank You!

