
City Nexus: Discovering Pairs of Jointly-Visited Locations
Based on Geo-Tagged Posts in Social Networks

Yaron Kanza
Jacobs Technion-Cornell

Innovation Institute
kanza@cornell.edu

Elad Kravi
Technion – Israel Institute of

Technology

ekravi@cs.technion.ac.il

Uri Motchan
Technion – Israel Institute of

Technology

umotchan@gmail.com

ABSTRACT

Recently, there is a rapid growth in the use of microblogs,
such as Twitter, and of social networks, such as Instagram,
to publish geo-tagged posts that indicate the location of the
user at the time when the message is sent. This provides
abundant geospatial data that can be analyzed to under-
stand the behavior of masses of people, in particular in ur-
ban areas. Such analysis can improve and facilitate the work
of urban planners and of policy makers, e.g., when deciding
where to add transportation routes or public institutes. In
this demonstration, we present a system that utilizes geo-
tagged posts to discover places that were jointly visited by
many people. We present the management and the analysis
of the data, to illustrate the feasibility of the approach and
to indicate new research questions in this domain.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms

Algorithms, Design, Management

Keywords

Microblogs, geospatial, geo-tagged posts, urban planning

1. INTRODUCTION
Many online social networks and microblogging applica-

tions allow users to post geo-tagged messages or to specify
their location by checking-in. (Facebook, Twitter, Insta-
gram, and Foursqare are examples of such applications.) In
geo-tagged messages, the location of the user at the time
when the message is posted, is attached to the message. So,
such massages indicate places in which users visited. Ana-
lyzing large sets of geo-tagged messages can, thus, be useful
for understanding better the motion of people in cities and

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

SIGSPATIAL ’14, November 04-07 2014, Dallas/Fort Worth, TX, USA

ACM 978-1-4503-3131-9/14/11.

http://dx.doi.org/10.1145/2666310.2666378

for discovering anomalies or significant facts about the ex-
amined urban areas.

In this project we focus on the discovery of links between
places in a city, based on geo-tagged messages. Such mes-
sages, and in particular geo-tagged tweets, represent real
user movement in the city, they can indicate recent changes
and they can be easily collected from social networks. We
consider two places as linked if there are many people who
visited both places withing a short period of time. Since
we use geo-tagged messages, our system actually discovers
pairs of locations that quite a few people posted messages
from both places (in near times). Discovering such places—
locations that are jointly visited by many people—can be
used in urban-planning tasks, in recommendation systems
and may help monitoring changes in the city.

In urban planning, jointly-visited locations can indicate
places where there is a need for public transportation. It
can also emphasize the effect of public transportation, e.g.,
are there, in the examined city, many pairs of places that
are connected by public transportation and are jointly vis-
ited while other similar pairs, without effective public trans-
portation between them, are only seldom jointly visited?
Far away jointly-visited places may indicate the need for fa-
cilities or services in a certain area. For example, if many
people from some neighborhood visit a park far from their
neighborhood, this may point out a need to add a park near
or in this neighborhood.

The ability to detect jointly-visited places can be used in
recommendation systems. Such systems recommend places
to visit by telling a user that quite a few people who vis-
ited the location she is currently at also visited the recom-
mended places. Note that this is similar to recommenda-
tions in online shopping (“Costumers who bought this item
also bought...”) except that the recommendation is of places
rather than items.

A monitoring of changes can be done by running the dis-
covery algorithms from time to time, to detect changes in the
set of linked places. If two linked places cease being jointly
visited or if two unlinked places suddenly start being jointly
visited, this may call for an inspection. This may reveal
transportation issues, or trigger an alert, e.g., if a touristic
site and an hospital are suddenly jointly visited, this may
divulge concealed hazards in the touristic site.

One of the difficulties in discovering jointly visited places
is dealing with the masses of data and the complexity of the
problem. In many similar problems of analyzing geospatial
data, it is natural to cluster messages based on locations and
ignore the association to the user who posted the data. Such

1597

approach works well in detection of hotspots or events. How-
ever, for finding jointly-visited places, we cannot ignore the
associations of messages to users, because these associations
define the linkage between places. Obviously, clustering or
grouping messages by ignoring locations would fail as well,
because the goal is to find linked locations based on the
joined visits of many people, not just of a single individual.

To handle the problem, we developed a system that col-
lects geo-tagged messages, stores, clusters and processes the
messages efficiently to find jointly-visited locations. The
system allows users to easily control various parameters in
the search for linked places. In the demonstration we will
present the system and its ability to effectively discover
jointly visited places in different cities in the world.

2. RELATED WORK
Recently, there has been a growing interest in using lo-

cation data of users for understanding better urban activi-
ties, and for improving and facilitating urban planning tasks.
Ratti et al. [7] used data from cellular phones for analyzing
the locations of people in the city. They generate graphic
views of urban activities and present the changes in activi-
ties as a function of time and space. Ferrari et al. [4] showed
how to detect hotspots in a city based on Twitter posts.
Their tasks are related to our task but are different in the
sense that they find crowded places and do not focus on the
relationships between locations, so they can avoid using the
association of posts or of other location data to the users
who produced the data.

Bawa et al. [1] analyzed geo-tagged messages they had
collected from Foursquare, and detected motion pattens of
individuals. Differently from us, their focus is on individu-
als rather than on masses of people. Kling et al. [6] showed
how to classify posts into urban topics related to various ac-
tivities, based on the location and the content of the posts.
The Livehoods project of Cranshaw et al. [2] uses geo-tagged
messages from both Foursquare and Twitter to find bound-
aries between neighborhoods. Note that there are a few
neighborhoods in a city but there can be many pairs of
jointly visited locations, so the discovery of linked places re-
quires a different approach than recognizing neighborhoods.

Some previous papers studied the problem of place recom-
mendation (e.g. [5]) or route recommendation (e.g. [3]) based
on activities in social networks, however, their approach is
user-targeted and does not focus on the general discovery of
jointly-visited places.

3. SYSTEM
Our system is designed as a client-server web application.

The client is a web browser. Thus, we use the Google Maps
API for presenting pairs of message clusters and relevant
meta data, on a map. The back-end tier includes crawlers
and a server that performs the computation of the clustering
and the discovery of the links between clusters. The crawlers
are responsible for downloading new geo-tagged messages
from social networks and storing them in the database. The
server clusters the messages and then finds pairs of clusters
that are jointly visited by many users. The system architec-
ture is presented in Figure 1.

By using a client-server architecture, the back-end tier can
collect geo-tagged messages from social networks, compute
clusters, using different parameters, and find links between

(1) fetch data for running

data analysis task

(2) store and retrieve finished

data analysis task

crawling geo-

tagged messages

(1) run new data

analysis task

(2) retrieve results of

finished tasks

Backend

MongoDB

Google

maps

API

present

clusters and

metadata

Frontend

Figure 1: System Architecture

clusters, on the background, without affecting the client.
Next we elaborate on the components of the system.

3.1 The Front-end
We present now the client side of the system.

3.1.1 Issuing Data Analysis Tasks

One of the difficulties in the discovery of linked places is
that it may not be clear what “place” means. In some cases
a place may refer to a building and in other cases it may
refer to an area, such as a park or a neighborhood. Hence,
the system allows the user to insert parameters that control
the computation of the clusters and of the links between
them. The system allows users to insert parameters such as
the minimal number of messages in a cluster, the minimal
distance between clusters and the maximal distance between
messages in a cluster. To control the creation of links, users
can specify a threshold for the percentage of users who have
a message in both clusters out for the total number of users
associated with one of the clusters.

The computations required for a data analysis task may
not be immediate. Hence, a data analysis task is sent as
an Ajax request to the server, allowing the server to notify
the client when the task is completed. Upon completion
of a task, the task is stored in the database and a link to
it is added to a table of complete tasks, so users can view
complete tasks whenever they desire.

3.1.2 Displaying Analysis Results

Complete analysis tasks can be viewed by the user. Fig-
ure 2 presents a view of a complete task. The client page
was designed using Twitter’s Bootstrap CSS and Javascript
package (http://getbootstrap.com/). At the top of the
screen, the user can initiate a new data analysis task or load
an existing task from the complete-tasks table. From the
row below, the user may select pairs of linked places, of the
currently viewed analysis task. For two clusters C1 and C2,
the mutual users of these clusters are those users who have
at least one message in C1 and at least one message in C2.
The pairs are ordered by the number of mutual users of each
pair. That is, the first pair is the one with the largest num-
ber of mutual users and the last pair is the one with the
least number of mutual users. On the left side of the screen,
the settings of the current data analysis task are presented.
The pairs are presented on a map using the Google Maps
API (https://developers.google.com/maps/).

2598

Figure 2: Screenshot of our System

The view in Figure 2 includes a pair of clusters—each clus-
ter is presented as a red circle. The system presents for a
selected cluster (in Figure 2, the bottom cluster is selected),
information about it, including an address (achieved by re-
verse geocoding), and other properties of the cluster.

The user may also pin a cluster (see the button at the
lower-right corner of the information panel of the bottom
cluster). Upon pinning a cluster, the system presents all the
clusters that are paired with the pinned cluster, to show all
the places that are linked to the pinned cluster.

3.2 The Back-end
The back-end contains a server, a database, a module for

crawling and storing the data and a module for computing
clusters and links between them. The modules are imple-
mented in Java.

Crawling and Storing Geo-Tagged Messages. Geo-
tagged messages are retrieved from social networks using
their public APIs. Our current dataset consists of messages
from Twitter and Instagram. Each message is associated
with several properties such as the location of the message,
a caption or text, posting time, etc. Each message is asso-
ciated with a user that has a unique user id. Hence, we are
able to retrieve all the messages sent by a specific user.

The Database. Retrieved messages are stored in a Mon-
goDB database system (http://www.mongodb.org). Mon-
goDB is an open-source document-based database. It is
suitable for storing a large quantity of messages and it pro-
vides an intuitive API and easy integration with Java. It
conducts concurrency control (transaction management) in
an effective way that allows to effectively retrieve data while
processing analysis tasks or presenting results to the user.

There are two indexes to support efficient retrieval of mes-
sages according to different parameters. A spatial index, in
the form of a quad-tree, supports efficient retrieval of mes-
sages from a specific area. A temporal index supports re-
trieval of messages that were sent in near times—the index
resembles an array where each cell contains references to the
messages posted during the time interval the cell represents.

The Server. At the back-end there is a Restlet server
that provides a REST API for supporting the client requests
(http://restlet.org). The main functions of the API in-
clude (1) specifying and initiating a new data analysis task,
and (2) retrieving from the database and presenting the re-
sults of executed tasks. Since the computation of data anal-
ysis tasks may take time, upon a request for a new data
analysis task, the server runs a new thread to handle the
task (according to the parameters of the request).

When the computation ends, the revealed pairs are stored
in the database. Each cluster entry contains an identi-
fier, the center-of-mass of the cluster, the coordinates of the
bounding box of the messages of the cluster (for efficient
search), the number of messages in the cluster and the num-
ber of users associated with the cluster. Upon a request for a
complete analysis task, the server retrieves the results from
the database and sends them to the client for presentation.

4. DISCOVERING LINKED PLACES
We briefly present our methods of finding linked places.

4.1 Clustering Geo-Tagged Messages
In our task, the number of messages can be large, so we

had to use an efficient clustering algorithm. Since in an anal-
ysis task the number of clusters is initially undefined, we
used a version of agglomerative clustering, which is a type
of hierarchical clustering [8]. Agglomerative clustering, in
contrast to divisive clustering, is a “bottom up”process. Ini-
tially, each point is considered a cluster. Then, repeatedly,
a cluster is chosen and merged with the cluster closest to it.
(The new cluster replaces the two merged clusters, thus after
each merge step, the number of clusters is decreased by one.)
In this process, the main challenge is to guarantee a cluster
represents a single place. To do so, we employ two stopping
conditions—one that is based on a distance threshold and
one that is based on location-name preservation. The dis-
tance threshold prevents merging two clusters for which the
distance between their centers-of-mass exceeds the thresh-
old. In the location-name preservation, initially we assign a
place name to each cluster, by applying reverse geo-coding

3599

on the center-of-mass of the cluster. We avoid merging clus-
ters if their location names do not match. The clustering
process ends when no pair of clusters can be merged.

To effectively retrieve the messages from the database, the
system only retrieves messages whose bounding box inter-
sects the analyzed area (city). Another simplification, to
improve the efficiency, is retrieving from the database only
users whose number of messages exceeds a given threshold,
to avoid dealing with users who visited very few places.

Since the clustering algorithm has O(n3) time complexity,
where n is the number of messages in the dataset, we used
thresholds and other simplifications to make the process fea-
sible. In this process, an iteration is a merge of two clusters
or marking a cluster as part of the output and removing
it from the set of processed clusters. Initially, there are n
clusters, and each iteration decreases by one the number of
processed clusters—either by a merge or by moving a cluster
to the output. So, there are at most n iterations. In each it-
eration, each cluster is only considered as a potential merge
for a constant number of clusters in its vicinity, and a cluster
that cannot be merged with any cluster is removed from the
set of processed clusters. Thus, each iteration, among the n
iterations, has a time complexity that does not depend on
n, and the time complexity is O(n).

4.2 Finding Links Between Clusters
In order to present results that can be examined by an ur-

ban planner, the final number of clusters should be limited.
The goal is to present only significant clusters. In the def-
inition of a task, the urban planner can specify the desired
number of clusters in the result. We denoted this number
by k. The question is how to choose k significant clusters
from the clustered computed by the clustering algorithm.

The system employs two heuristics for choosing the sig-
nificant k clusters. One approach is to return the k clusters
with the highest number of messages. This approach is sim-
ple but it can be biased in a case where a few users posted
many messages from the location of the cluster. Another
approach is to count for each cluster the number of unique
users who have a message in the cluster. Then, return the
k clusters with the highest count of unique users.

For the k selected clusters, the system computes for each
pair the number of mutual users. Consider two clusters—C1

with c1 users and C2 with c2 users—and m mutual users in
C1 and C2. Then, the ratio of mutual users is defined as

max
{

m
c1
, m
c2

}

, so if a large number of users who visited one

place also visited the other place, then the two places should
be considered as linked, even if the second place is a very
large cluster and is linked to several places. To effectively
present the results to the user, the pairs are sorted according
to the ratio of mutual users.

To compute the number of mutual users, the system ap-
plies the following approach. First, an array Ac is created
with an entry for each pair of clusters. Then, the system cre-
ates a bipartite graph B, where the nodes are all the clusters
and all the users, and there is an edge between a cluster and
a user if the user has a message in the cluster. After creating
B, in a single pass over B the system finds all (C1, C2, u)
such that there are edges (C1, u) and (C2, u) in B. For each
such triple, the entry for C1 and C2 in Ac is increased by
1. At the end of this process, the k cluster pairs with the
highest count in Ac are returned.

5. DEMONSTRATION
Our demonstration presents the City Nexus system. We

show how a large number of messages can be collected, clus-
tered, and analyzed using different parameters, for finding
jointly-visited places in different cities in the world (New
York, Los Angeles, London). The system illustrates an in-
tuitive approach for presenting connected places on a map
while allowing novice users to control various parameters.

A video of the system is available via the following link:
http://www.youtube.com/watch?v=nUbc4uqsprs, illustrat-
ing a discovery of linked locations, based on Twitter tweets
in New-York City. The clustering algorithm starts with
10000 users, filtering out users with less than 10 messages.
Messages are clustered within a radius of 300 meters. Then,
only the 30 clusters with the highest number of users are
selected for the next step. From the optional pairs, we filter
out pairs of clusters that the distance between them is less
than 4 kilometers and clusters that do not have at least 15%
of mutual users (this is based on arbitrary parameters and
can be changed). The result pairs are presented, sorted by
the percentage of mutual users. A few discovered pairs are
obvious, e.g., many people who visited Times Square also
visited SoHo, Manhattan, and such pairs provide a verifica-
tion of the approach. Most of the pairs, however, are pairs
we could not predict, and such pairs provide new insights
about the city. The demonstration will present this search
and additional searches with other parameters, over New
York, London and Los Angeles.

6. ACKNOWLEDGMENTS
This research was supported in part by the Israel Science

Foundation (Grant 1467/13) and by the Israeli Ministry of
Science and Technology (Grant 3-9617).

7. REFERENCES
[1] A. Bawa-Cavia. Sensing the urban: using location-based

social network data in urban analysis. In 1st Workshop on
Pervasive Urban Applications, 2011.

[2] J. Cranshaw, R. Schwartz, J. I. Hong, and N. M. Sadeh. The
livehoods project: Utilizing social media to understand the
dynamics of a city. In International AAAI Conference on
Weblogs and Social Media, 2012.

[3] Y. Doytsher, B.Galon, and Y. Kanza. Storing Routes in
Socio-spatial Networks and Supporting Social-based Route
Recommendation. In Proc. of the 3rd ACM SIGSPATIAL
International Workshop on Location-Based Social Networks,
pages 49–56, 2011.

[4] L. Ferrari, A. Rosi, M. Mamei, and F. Zambonelli.
Extracting urban patterns from location-based social
networks. In Proc. of the 3rd ACM SIGSPATIAL
International Workshop on Location-Based Social Networks,
pages 9–16, 2011.

[5] B. Hu and M. Ester. Spatial topic modeling in online social
media for location recommendation. In Proceedings of the
7th ACM Conference on Recommender Systems, pages
25–32. ACM, 2013.

[6] F. Kling and A. Pozdnoukhov. When a city tells a story:
Urban topic analysis. In Proc. of the 20th ACM
SIGSPATIAL International Conf. on Advances in
Geographic Information Systems, 2012.

[7] C. Ratti, R. M. Pulselli, S. Williams, and D. Frenchman.
Mobile Landscapes: using location data from cell phones for
urban analysis. Environment and Planning B: Planning and
Design, 33(5), 2006.

[8] R. Xu, D. Wunsch, Survey of clustering algorithms. IEEE
Transactions on Neural Networks, 16(3):645–678, 2005.

4600

