THE RANKING GAME

Ran Ben-Basat Elad Kravi

Computer Science faculty, Technion, Israel
A SEARCH ON THE WEB

the ranking game

GameRankings - Video Game Reviews from around the Internet
www.gamerankings.com/
Founded in 1999, GameRankings indexes over 240000 video game reviews from both online and offline sources, plus over 230000 other news articles.

College Rankings - Reed College
https://www.reed.edu/apply/college-rankings.html
College Rankings, campus banner photo. Reed and the Rankings Game. Why doesn't Reed participate in U.S. News & World Report's college rankings?

[PDF] The University Rankings Game - Lehigh University
www.lehigh.edu/~incbeug/.../Dearden_Grewal_Lilien_Rankings_Game_May_2008.p...
by R Grewal - 2008 - Cited by 52 - Related articles

Gaming the College Rankings - The New York Times
www.nytimes.com/2012/02/01/education/gaming-the-college-rankings.html
Feb 1, 2012 - Any love-hate relationship must have its share of pain, so the academic world, in its obsession with college rankings, is suitably dismayed by ...

Top Core PC Games | US & Europe | Newzoo
Every month Newzoo and Overwolf publish the Top 20 Core PC Games in the US and Europe. The ranking is based on the number of unique sessions during a ...
We sell custom cigar humidors. Our custom cigar humidors are handmade. If you’re thinking of buying a custom cigar humidors, please contact our custom cigar humidors specialists at custom_cigar_humidors@example.com.

One approach for Search Engine Optimization (SEO)
EXAMPLE

score

10 8 3 stuffs

8 3

6 2

3

9 2 stuffs

2

8

1

10 1 stuffs

11

9

2

3

12

11

9

3 stuffs
PROBLEMS

- Search engine’s performance worsens due to the competition
- Degraded coherency
- Hard to distinguish between white/black hat SEO

Goal:

- Can the search engine reduce the motivation for “bad” content manipulations?
OUR CONTRIBUTION

• Developed formal methodology to measure the tolerance of a ranking scheme to keyword stuffing
• Showed that competition may degrade retrieval effectiveness
• Offered a probabilistic ranking scheme and showed an indication for it to reduce the incentive to manipulate the content
INSPIRED BY GAME THEORY

- Documents are strategic players
 - Profit derived by rank
 - Cost by SEO actions
 - Utility = Profit - Cost

- Competition is a game:
 - Each document “plays” in its turn – perform the Best Response
 - A round – all the documents have a change to act
FORMAL MODEL

- Given a query \(q \in Q \), and a set of documents \(D \)
- Ranking function: \(D \times Q \rightarrow [0, 1] \)
 - e.g., BM25
- Profit: \(P: \{1, \ldots, n\} \rightarrow \mathbb{R}^+ \)
 - e.g., reciprocal ranking \((p(i) = \frac{1}{i}) \)
- Cost: \(C: D \times D \rightarrow \mathbb{R}^+ \)
 - representing cost of SEO
 - e.g., fixed cost per stuffed term
- Utility: \(U_i(d'_i) = E(P(r(d'_i))) - C(d'_i, d_i) \)
 - expectancy is explained later on
ASSUMPTIONS

- Ranking function is known to all the documents
- No content deletions
- Only query terms are stuffed
- Documents optimize for a single query
SIMULATION

Competition

Best-Response Evaluation

round

query

documents

modified documents
BEST RESPONSE

- A document should iterate over all possible modifications
 - however, this number is large
 - when limiting the number of stuffed terms to k
 - $CC_n^k = \binom{n + k + 1}{n}$ where there are n query terms
 - still large…
Greedy algorithm:

iteratively add the term which locally maximizes the Ranking score

- eventually return the revised document or the original one if no improvement was found
AN EXAMPLE OF COMPETITION

- $\Sigma = \{a, b, c, d\}$, $q = \{a, b\}$, $d_1 = \{a\}$, $d_2 = \{b, c\}$
- RSV – Query Likelihood with Laplace smoothing
- $P(1)=1$, $P(2)=0$, $C:0.75$ per term
- $RSV(d_1, q) = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{25}$, $RSV(d_2, q) = \frac{1}{6} \cdot \frac{2}{6} = \frac{2}{36}$
- $d_2' = \{a, b, c\} \Rightarrow RSV(d_2', q) = \frac{2}{7} \cdot \frac{2}{7} = \frac{4}{49} > \frac{2}{25}$
- $d_1' = \{a, b\} \Rightarrow RSV(d_1', q) = \frac{2}{6} \cdot \frac{2}{6} = \frac{4}{36} > \frac{4}{49}$

- and the second player cannot improve its utility from stuffing
DETERMINISTIC RANKING

score

10

8

3 stuffs

6

8

3 stuffs

9

2 stuffs

8

1 stffs

9

1 stuffs

10

1 stuffs

11

12
PROBABILISTIC RANKING

\[\rho = 0.75 \]

\[\text{Rand}(1,2) \]

1. 10
2. 7.5
3. 6
4. 8
PROBABILISTIC RANKING

$\rho = 0.75$
PROBABILISTIC RANKING

\[\rho = 0.75 \]

\[\text{rand}(1,2) \]

\[\text{rand}(1) \]
The incentive for stuffing is lower since improving the score does not promise an increased utility.
DATASET

- AP news & Wall Street Journal
- Including TREC’s relevance judgments (79 queries)

- Settings:
 - *profit* – reciprocal ranking \(p(i) = \frac{1}{i} \)
 - *fixed cost* – 0.05 per term
 - 20 *players* (documents)
 - *up to 10 rounds*
 - *BM25* as a deterministic ranking function
 - Probabilistic ranking – using 10k Monte-Carlo simulations
KEYWORD STUFFING EXPERIMENT

- ρ is decreasing \rightarrow stuffing is less profitable
- In high values of ρ highly-ranked pages stuff terms
CONVERGENCE EXPERIMENT

- Randomness in the ranking process limits the competition between web pages
RELEVANCE EXPERIMENT

<table>
<thead>
<tr>
<th>No Competition</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
<th>MAP₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Set</td>
<td>0.5105</td>
<td>0.4835</td>
<td>0.4734</td>
<td>0.0655</td>
</tr>
<tr>
<td>Det. Ranking</td>
<td>0.4557</td>
<td>0.4481</td>
<td>0.4341</td>
<td>0.0591</td>
</tr>
</tbody>
</table>

- Decrease in relevance across all metrics due to the competition
 - The ranks of irrelevant pages improve throughout the competition
- Due to small corpus size - not significant statistically

¹values are low since the MAP was calculate over 20 documents
RELEVANCE EXPERIMENT

<table>
<thead>
<tr>
<th></th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
<th>MAP (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Set</td>
<td>0.5105</td>
<td>0.4835</td>
<td>0.4734</td>
<td>0.0655</td>
</tr>
<tr>
<td>Det.</td>
<td>0.4557</td>
<td>0.4481</td>
<td>0.4341</td>
<td>0.0591</td>
</tr>
<tr>
<td>Prob. (0.9)</td>
<td>0.4492</td>
<td>0.4490</td>
<td>0.4449</td>
<td>0.0590</td>
</tr>
</tbody>
</table>

- Decrease in relevance across all metrics due to the competition
 - Irrelevant pages ranks improve throughout the competition
- Due to small corpus size - not significant statistically

\(^1\)values are low since the MAP was calculate over 20 documents
CONCLUSIONS

- We built a methodology for estimating techniques for handling web spam
- Inspired by game theory, pages are strategic players with profit, cost and utility
- Illustrated the system on probabilistic ranking, and show it reduces spam with limited implication on search quality
FUTURE WORK

- Additional and bigger datasets
 - Including web pages
 - Optimized for SEO

- Comparison to other spam-aware methods

- Extend the framework to other SEO operations e.g., link farming
 - Can the probabilistic approach reduce manipulations?
THANK YOU!